基于Hybrid Inas Josephson连接(JJS)的超导电路在快速和超低功率消耗固态量子电子设备和探索新型物理现象的设计中起着主角的作用。常规上,使用INA制成的3D基材,2D量子井(QW)和1D纳米线(NWS)用于与混合JJS创建超导电路。每个平台都有其优点和缺点。在这里,提议将Inas-ins-on-insun-unsulator(Inasoi)作为开发超导电子产品的开创性平台。具有不同电子密度的半导体INA的表层呈现到Inalas变质的bu效中,有效地用作低温绝缘子,以将相邻的设备电气解除。JJ是使用Al作为超导体和具有不同电子密度的INA的。的开关电流密度为7.3μm-m-1,临界电压为50至80μV,临界温度与所使用的超导体的临界温度相当。对于所有JJS,开关电流都遵循带有平面外磁场的Fraunhofer样图案。这些成就使使用Inasoi可以使用高临界电流密度和出色的门控性能设计和制造表面暴露的Josephson场效果。
秉承“Ina、Deskubre、Setbe(启迪、发现、服务)”的使命,关岛大学不仅通过学术、研究和服务影响着学生的生活和服务社区,而且还促进了关岛的经济。
研究机柜招募建筑实现,技术研究(APS,APD),《指控书》(DAO)的准备,遵循AAAC和INA的建筑工程,环境实验室和IBAP总部的建设工作。
将N1拉到低状态时,N2和N1的电压显着低于VE,并导致Q1进行。这使INA进入下图中的虚线橙色箭头所示的逻辑低。低状态信号穿过隔离器,并导致Outa变低。N7处的电压通过蓝色箭头说明的二极管D2的前向偏置。但是,当N1变高时,由于N7和N5处剩余的低级信号,它的电压无法立即返回VCC1的水平,这会导致D1向前偏置。相反,N1升至阻断Q1的必要电势。它一直保持在此级别,直到Q1上的高阻抗使R4可以为隔离器输入INA提供高逻辑,从而释放N6和D3并导致N7升高。只有这样,N1才能返回到VCC1的级别。
此简介的作者是诺曼·蒂洛斯(Norman Tilos),本杰明·托马斯(Benjamin Thomas)和伊什里塔·古普塔(Ishrita Gupta)。作者要感谢以下专业人士的合作和珍贵的贡献,包括支持者Devan Wardwell(森林碳),Thomas Houston(Forest Carbon);和工作组成员:Janice Freeman(Nike),Alex Downs(DCFD),Ceejay Hernandez(HSBC),Marilia Dos Reis Martins(Crossboundary),Michael Keane(Mufg),Ina Hoxha(Ina Hoxha(Ifu)(IFU) Boeschoten(FMO)和Alfred Helm(英国Desnz)。作者还想承认罗伯特·W·范·兹维滕(Robert W. Van Zwieten)的贡献(亚洲),CPI。作者还要感谢Barbara Buchner,Ben Broche,Rachael Axelrod,Kathleen Maedar,Ricardo Narvaez,Angela Woodall,Elana Fortin,Pauline Fortin,Pauline Baudry,JúlioLubianco和JúlioLubianco和Samuel Goodman的连续建议,支持,评论,评论,设计,内部审查以及内部评论,以及内部评论和内部审查。
有关更多信息,请联系:RNDR。Jan Bobek博士。 或mgr。 KateTi光Petùčková,博士。 Inst。 临床医学,第一学院医学院,查尔斯大学Studničkova7,布拉格2电话。 224968592,-8498 E -Mail:Jan.bobek@lf1.cuni.cz,katerina.petrickova@lf1.cuni.czJan Bobek博士。或mgr。KateTi光Petùčková,博士。Inst。临床医学,第一学院医学院,查尔斯大学Studničkova7,布拉格2电话。224968592,-8498 E -Mail:Jan.bobek@lf1.cuni.cz,katerina.petrickova@lf1.cuni.cz
我想借此机会承认南艾伯塔省第 7 号条约地区人民的传统领土,其中包括黑脚邦联(由 Siksika、Piikani 和 Kainai 原住民组成)、Tsuut'ina 原住民和 Stoney Nakoda(包括 Chiniki、Bearspaw 和 Goodstoney 原住民)。卡尔加里市也是艾伯塔省梅蒂斯民族(第 3 区)的所在地。
第一部分。对实验结果的讨论。前面论文中描述的结果表明,膜的电行为可以由图中所示的网络表示。1。电流可以通过为膜容量充电或通过与容量并联的电阻通过电阻来通过膜传递。离子电流分为由钠和钾离子(INA和IK)携带的成分,以及由氯化物和其他离子组成的小“泄漏电流”(I,I)。离子电流的每个组件都由驱动力确定,该驱动力可以方便地测量为电势差和具有电导尺寸的渗透系数。因此,钠电流(INA)等于钠电导率(9NA)乘以膜电位(E)和钠离子(ENA)平衡电位之间的差异。类似的方程式适用于'K和I,并在p上收集。 505。我们的实验表明GNA和9E是时间和膜电位的函数,但是ENA,EK,EL,CM和G可以将其视为恒定。可以通过说明:首先,将膜电位对渗透率的影响汇总会导致钠电导率的瞬时增加,并且降低但保持较慢但保持钾的增加速度的增加;其次,这些变化是分级的,并且可以通过重现膜来逆转。为了确定这些影响是否足以说明复杂现象,例如动作潜力和难治时期,有必要获得有关