1巴塞罗那的Institute Bot。 (E.L.-G。); (B.B。); (C.G.-B。); (N.I.); (lm.-G。); (N.N.); 2环境科学学院,圣灵桑托(美国),美味091650,厄瓜多尔3国家生物多样性研究所巴塞罗那自动性,分子生物学与工程生物化学系,帕勃罗·德·奥拉维德大学,西班牙塞维利亚41013; 6生物多样性,生态与进化论(UNICA单位),生物科学学院,马德里的补充,西班牙马德里28040; Mario @cm.es *通信:);这些作者。
课程信息BIOL 428非洲生物多样性2025讲师:麦吉尔大学生物学系安德鲁·亨德里(Andrew Hendry)一起学习和探索肯尼亚的生物多样性(生物多样性)。基本方法以不同时间和地点进行生物多样性调查为中心。将借助双筒望远镜,摄像机和声音记录(例如App Merlin)进行调查。标识将通过书籍,各种应用程序和在线资源来促进。观察结果将被上传到“社区科学”数据库,尤其是intatorist。基于上次教授本课程的经验;我们创建了一个网页(右图),概述了过程和资源 - 转到:https://sites.google.com/view/meafss。鉴于肯尼亚某些网站可能会出现低带宽的可能性,我建议您在班级启动之前探索网页 - 并下载在此推荐的各种程序和资源。我将在课程开始时建立一个inaturalist的“项目”。,我们将出于课程的目的加入该项目。识别物种是一回事 - 但是了解它们是另一回事!努力迈向这种理解,学生将准备一个或多个在行为观察期间进行的观察和录音的书面摘要(例如Weaverbirds)。在课程结束时,学生将就有关Inaturalist及其用途的科学论文进行演讲 - 这些演示将整合在实施生物多样性调查期间获得的经验。
您可以使用公共记录或使用公民科学平台(例如Inaturalist)检查网站上已经在您的网站上记录了哪些物种。这可能会突出特定的物种或关注或兴趣的生态系统,并可以为未来的调查和监测提供一个起点。
摘要近年来,生物多样性库存平台的发展促成了对异国物种的检测,从而使公众对他们对本地栖息地的影响有所了解。这在金丝雀群岛和其他海洋群岛中很重要,在那里,入侵物种对生态系统和生物多样性监测策略的保护构成了极大的风险,可能在其检测中不足。在这里,我们首次报道了加那利群岛上佛罗伦萨羊毛梳理蜜蜂,佛罗伦萨Anthidium florentinum的发生,并在公民科学的帮助下解决了其当前在特内里费岛和格兰卡纳里亚群岛的分布。最近通过使用inaturalist的其他蜜蜂物种被总结为群岛。还讨论了佛罗伦萨曲霉对群岛本地蜜蜂群落的可能影响,以及城市在托管生物学入侵中的作用。
CUB200-2011 [ 177 ] 图像对象定位 [ 4 , 16 , 96 , 100 , 110 , 210 ] 细粒度图像分类 [ 61 , 109 , 110 , 209 ] iNaturalist [ 168 ] 图像不平衡图像分类 [ 32 , 100 , 110 ] FGVC-Aircraft [ 116 ] 图像细粒度图像分类 [ 61 , 96 , 100 , 109 , 110 ] UCI [ 3 ] 图像表格数据分类 [ 44 , 209 , 212 ] MR [ 113 ] 图像句子分类 [ 46 , 47 , 103 ] TREC [ 129 ]图像句子分类 [ 46 , 47 , 67 , 82 , 103 , 147 , 207 ] SST [ 153 ] 文本句子分类 [ 46 , 47 , 67 , 82 , 103 , 147 ] Subj [ 128 ] 文本句子分类 [ 46 , 47 , 67 , 82 , 103 ] GLUE [ 179 ] 文本自然语言理解 [ 159 , 204 , 207 , 216 ] Google 命令 [ 183 ] 音频分类 [ 52 , 71 , 94 , 212 ]
图3。主题的倾斜dorso-lightal视图(照片作者:su yan le)。备注:在网站“新加坡的生物多样性”上,该页面包含来自新加坡录制的炭疽病(singapore.biodiverity.online.online/taxon/a-arth-hexa-coleo-anthri,于2024年5月9日访问),其中有76种样本的插图,其中有76种。但是,其中没有一个被识别为拉瓦西亚。尽管已知在新加坡发生的炭疽病的多样性相当高,但这些昆虫通常似乎是众所周知的(Chua,2011年)。这种观察可以代表新加坡真菌象鼻虫的乌拉氏菌的第一个记录。注意:此记录已在inaturalist上发表(请参阅https://www.inaturalist.org/observations/202675050和https://wwwww.inaturalist.org/observations/202776930)。引用的文献:Chua Mah(2011)真菌Weevils家族Anthribidae。in:ng pkl,corlett rt&tan htw(eds。)新加坡生物多样性:自然环境和可持续发展的百科全书。版Didier Millet和新加坡国立大学新加坡国立大学生物多样性研究博物馆,p。 319。
上下文。早期监视和发现生物安全物种的入侵是有效的生物安全系统的关键组成部分。公民科学是一个机会,可以使社区参与生物安全,并为公民科学家提供机制,以促进监测国家已经存在的物种的传播以及报告新入侵的物种的贡献。目标。介绍了澳大利亚如何将公民科学用于环境生物安全监视的示例,并展示了大型数据服务的价值,例如澳大利亚生活地图集(ALA),作为公民科学与管理之间的连接器。方法。我们使用R编程语言实现的定制解决方案详细说明了如何设置警报电子邮件系统。该系统通过查询ALA数据库中对管理当局提供的列表匹配的物种而起作用。警报可以在国家,州/地区和地方政府规模以及定义的空间区域(例如国家公园庄园)发出警报。关键结果。十二个月,警报的最高来源来自inaturalist(一个流行的全球生物多样性公民科学平台),还有一套生物多样性报告的应用程序的其他贡献。在一个12个月的时间内,警报服务为150多种物种提供了通知,其中包括澳大利亚入侵物种的首次公开记录。结论。诸如生物安全警报服务之类的系统,通过社区与决策之间的联系产生影响。含义。我们的发现展示了公民科学的进步如何与研究基础设施的发展相互联系,并最终将导致公民科学数据的更高科学和管理价值。
我们介绍了Biotrove,这是旨在推进生物多样性应用程序的最大公共访问数据集。Biotrove从Intaturist平台策划,并审查仅包括研究级数据,包含16190万张图像,提供了三个主要王国的前所未有的规模和多样性:Animalia(“动物”),真菌(“ Fungi”),“ Fungi”)和parterae(“植物”),跨越了大约366.6k种。每个图像都用科学名称,分类层次结构和通用名称注释,可提供丰富的元数据,以支持各种物种和生态系统跨越准确的AI模型开发。我们通过释放一套使用4000万个字幕图像的子集(称为Biotrove-Train)训练的剪辑模型来证明Biotrove的价值。This subset focuses on seven categories within the dataset that are underrepresented in standard image recognition models, selected for their critical role in biodiversity and agriculture: Aves ("birds"), Arachnida ("spiders/ticks/mites"), Insecta ("insects"), Plantae ("plants"), Fungi ("fungi"), Mollusca ("snails"), and Reptilia (“蛇/蜥蜴”)。为了支持严格的评估,我们介绍了几个新的基准测试和报告模型的准确性,以跨生活阶段,稀有物种,混杂物种和多种分类学水平进行零拍学习。我们预计生物群将刺激AI模型的开发,这些模型支持用于害虫控制,作物监测,生物多样性评估和环境保护的数字工具。这些进步是确保粮食安全,保存生态系统并减轻气候变化影响的范围。Biotrove公开可用,易于访问,并准备立即使用。
2015年全球基础设施支出总计2.3万亿美元(牛津经济学,2017年)。尽管对于经济增长至关重要,但基础设施的扩张却缩小了人类活动和脆弱的生态系统之间的边界。在热带地区,侵占的生态威胁尤其急剧,占地三分之二的生物多样性,但有60%以上的全球基础设施支出发生(FAO和UNEP,2020年)。这是由于数百万的土著人民(已经支持了数千年的生物多样性)所受到的事实而受到了影响。经济学家长期以来一直在寻求如何降低发展的环境成本(Grossman and Krueger,1995; Dasgupta等人。,2002年; Copeland and Taylor,2004年)。生物多样性在本文中很少受到关注(Frank and Schlenker,2016年),更不用说基层解决方案来平衡发展和保护。因此,填补这一空白不仅需要对基础设施的生态威胁的估计,而且还需要地方机构中和中和的作用。我的第一个目标是更深入地了解基础设施扩展导致生物多样性损失的程度。我将其称为基础设施 - 双性恋多样性折衷。第二个目标是调查分散森林治理在减轻权衡方面的作用。更好地了解这些社会生态和制度过程可以帮助各国实现发展和保护的双重目标。广泛的环境是热带地区,在其中发生了一半以上的全球森林砍伐(Pacheco等人,2021)。尽管记录了生态增长的快速增长,但印度尤其避免了广泛的森林损失(印度森林调查,2019年)。目前尚不清楚这是由于森林覆盖物的植树或改变的定义所致。即使发展确实使森林毫发无损,重要的居住物种仍可能受到威胁并需要政策关注。这种物种难以捉摸的测量已导致生物多样性在以前的研究中被过度研究(Foster和Rosenzweig,2003; Burgess等人。,2012年)。本文的第一部分估计了2015 - 2020年之间印度森林的基础设施 - 双性恋多样性的权衡。这是一个有价值的设置,原因有三个。首先,印度是地球上最多的生物多样性国家之一,占全球生物视为的8%,占鸟类多样性的12%(Venkataraman和Sivaperuman,2018年; Jayadevan等人。,2016年)。第二,印度的生物多样性是由活跃的“公民科学家”记录的,他们在特定的物种上进行了观察(例如ebird)或一般(例如inaturalist)平台。印度拥有任何发展中国家的最高eBird会员资格,其地理编码上载是一种新的,高分辨率的生物多样性存储库,这是文学文献中无与伦比的。第三,印度公开报告基础设施森林侵占。森林砍伐