无分类器指导(CFG)已广泛用于文本到图像扩散模型中,其中引入了CFG量表以控制整个图像空间的文本指导强度。但是,我们认为全球CFG量表会导致空间不一致,这是不同的脱节优势和次优的图像质量。为了解决这个问题,我们提出了一种新颖的方法,即语义意识的无分类器指导(S-CFG),以自定义文本到图像扩散模型中不同语义单元的指导学位。具体来说,我们首先设计了一种训练 - 免费的语义分割方法,将潜在图像分配到每个Denoising步骤中相对独立的语义区域。尤其是,将U-NET主链中的跨意义图被重新归一化,以将每个贴片分配给相应的令牌,而自我注意力图则用于完成语义区域。然后,为了平衡各种语义单元的扩增,我们会自适应地调整各个不同区域的CFG尺度,以将文本指导学度重新确定为统一水平。最后,广泛的实验证明了S-CFG优于原始CFG策略在各种文本到图像扩散模型上的优越性,而无需任何额外的培训成本。我们的代码可在https://github.com/smilesdzgk/s-cfg上找到。
贸易/设备名称:WRDensity by Whiterabbit.ai 法规编号:21 CFR 892.2050 法规名称:图片存档和通信系统 监管类别:II 类 产品代码:QIH 日期:2020 年 9 月 29 日 收讫日期:2020 年 9 月 30 日 亲爱的苏先生: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中注明的用途而言),或与根据《联邦食品药品和化妆品法案》(法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请(PMA)的批准。因此,您可以营销该设备,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等效性判定并不意味着 FDA 已判定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有要求,包括但不限于:注册和列名(21 CFR 第 807 部分);标签(21 CFR 第
随附的未经审计的简明合并财务报表是根据美国公认会计原则(“GAAP”)和美国证券交易委员会(“SEC”)关于中期财务报告的适用规则和法规编制的。随附的简明合并财务报表包括 Palantir Technologies Inc. 及其合并子公司的账目。所有重大的公司间余额和交易已在合并中消除。公司持有至少 20% 所有权权益并有能力对被投资方施加重大影响但不控制的实体的投资采用权益法核算。某些前一年的余额已重新分类以符合本年度的列报。此类重新分类不影响总收入、营业亏损、净亏损或现金流。本公司的财政年度于 12 月 31 日结束。
摘要。尽管即使是非常先进的人工系统也无法满足人类成为社会互动适当参与者所需的苛刻条件,但我们认为并非所有人机交互 (HMI) 都可以适当地简化为单纯的工具使用。通过批评标准意向性主体解释的过于苛刻的条件,我们建议采用一种最小方法,将最小主体归因于某些人工系统,从而提出将采取最小联合行动作为社会 HMI 的案例。在分析此类 HMI 时,我们利用了丹尼特的立场认识论,并认为出于多种原因,采取意向性立场或设计立场可能会产生误导,因此我们建议引入一种能够捕捉社会 HMI 的新立场——人工智能立场。
我们努力提供创新的解决方案,因此,我们培养了我们的跨学科专业产品部门,以利用我们作为多方面企业的优势。在我们的整个历史中,我们一直努力为客户提供最高质量的产品和服务,只有通过我们持续着重于与您这样的客户的合作伙伴关系和合作,这才有可能。
建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。建议采取的行动:环境委员会和公用事业委员会建议采用法令01- O-25,以创建公平的社区主导的脱碳方法。鲤鱼:市政业务,建筑效率,可再生能源,弹性法规,实施,问责制和合伙企业:市政运营,建筑效率,可再生能源,可再生能源,弹性法规,实施,问责制,责任及合伙企业
我们的权力旨在积极促进清洁能源系统的采用,并设想未来的未来,他们不仅为子孙后代的安全环境做出了贡献,而且还将可再生能源部门定位为妇女的吸引人和有益的职业选择。除了个人授权之外,Wepower致力于积极地为包容,安全,韧性和可持续性城市和人类定居点的全面发展。这一承诺涉及通过增加妇女在权力和能源部门中领导作用的参与来促进积极的环境和社会变化。为了提高效率,WEPOWER将专注于有针对性的倡议,伙伴关系和倡导工作,以促进清洁能源促进和妇女在可持续发展方面的领导能力的双重目标。
越来越多的自动化和人工智能 (AI) 系统会提出医疗建议,包括个性化建议,这些建议可能会偏离标准护理。法律学者认为,遵循这种非标准治疗建议会增加医疗事故的责任,从而破坏潜在有益的医疗 AI 的使用。然而,这种责任在一定程度上取决于陪审员的判断:当医生使用 AI 系统时,陪审员会在哪些情况下追究医生的责任?方法:为了确定潜在陪审员的责任判断,我们对 2,000 名美国成年人的全国代表性样本进行了在线实验研究。每位参与者阅读了 AI 系统向医生提供治疗建议的 4 个场景中的 1 个。场景改变了 AI 建议(标准或非标准护理)和医生的决定(接受或拒绝该建议)。随后,医生的决定造成了伤害。参与者随后评估了医生的责任。结果:我们的结果表明,在其他条件相同的情况下,从人工智能系统获得提供标准护理建议的医生可以通过接受而不是拒绝该建议来降低责任风险。但是,当人工智能系统推荐非标准护理时,拒绝该建议并提供标准护理并没有类似的屏蔽效果。结论:侵权法制度不太可能破坏人工智能精准医疗工具的使用,甚至可能鼓励使用这些工具。
在班级学习(CIL)方案中,由于阶级的偏见对当前任务的偏见引起的灾难性遗忘者长期以来一直引起了重大挑战。它主要由判别模型的特征引起。随着生成性多模式模型的日益普及,我们将探索用CIL生成的歧视模型代替歧视模型。,从歧视到生成模式过渡需要解决两个关键挑战。主要挑战在于将生成的文本信息转移到不同类别的分类中。在方面,它需要在生成框架内制定CIL的任务。为此,我们提出了一种新颖的生成性多模式模型(GMM)框架,用于类增量学习。我们的方法直接使用改编的生成模型为图像生成Labels。获得详细的文本后,我们使用文本编码器来阐述文本特征,并采用匹配的功能来确定最相似的标签与分类的标签。在传统的CIL设置中,我们在长期序列的任务方案中取得了更好的影响。under少数CIL设置,与所有当前最新方法相比,我们的精度至少提高了14%,而遗忘的遗忘明显较小。我们的代码可在https://github.com/doubleclass/gmm上找到。