摘要 - 这项研究提议实施基于卷积神经网络的面部情感识别系统,以实时检测情绪,旨在优化工作场所环境并提高组织生产力。评估了六种深度学习模型:标准CNN,Alexnet,VGG16,InceptionV3,Resnet152和Densenet201,Densenet201实现了最佳性能,精度为87.7%,召回96.3%。该系统显示关键绩效指标(KPI)的显着改善,包括减少数据收集时间的72.59%,诊断时间降低了63.4%,工作满意度增加了66.59%。这些发现突出了深度学习技术对工作场所情感管理的潜力,实现了及时的干预措施,并促进了更健康,更有效的组织环境。
如果没有正确诊断,脑肿瘤是一种细胞异常增大。早期发现脑肿瘤对于临床实践和生存率至关重要。脑肿瘤有各种形状、大小和特征,治疗方法也各不相同。人工检测肿瘤既困难又耗时,而且容易出错。因此,对计算机诊断系统的需求很大,可以准确检测脑肿瘤。在本研究中,从 inceptionv3 模型中提取深度特征,其中得分向量从 softmax 获取并提供给量子变分分类器 (QVR),以区分神经胶质瘤、脑膜瘤、无肿瘤和垂体瘤。分类后的肿瘤图像已传递到所提出的 Seg 网络,在该网络中对实际感染区域进行分割以分析肿瘤严重程度。已在三个基准数据集(例如 Kaggle、2020-BRATS 和本地收集的图像)上评估了所报告研究的结果。该模型实现了超过 90% 的检测分数,证明了所提出模型的有效性。
摘要:中风诊断是一个时间紧迫的过程,需要快速准确地识别以确保及时治疗。本研究提出了一种基于机器学习的诊断模型,使用神经图像识别中风。早期识别和及时干预对于改善中风患者的预后至关重要,但目前的诊断技术,如 CT 和 MRI 扫描,通常需要耗时的专家分析。这些延迟可能会限制治疗的效果,特别是在分秒必争的急性病例中。问题在于需要更快、更可靠的诊断工具,这些工具可以高精度地分析神经影像数据,并尽量减少人工干预。机器学习,特别是深度学习,通过自动化中风检测过程,为解决这一差距提供了一种有希望的解决方案。我们采用了一种综合方法,利用 Inceptionv3、MobileNet、卷积神经网络 (CNN) 算法来分析神经影像并预测中风的发生。本研究提出了一种基于机器学习的诊断模型,使用神经影像识别中风,利用卷积神经网络 (CNN) 的强大功能,采用 Inception V3 和 MobileNet 架构。 Inception V3 以其通过深度卷积层捕获复杂图像特征的能力而闻名,而 MobileNet 则针对效率和速度进行了优化,它们被用于处理大量脑部扫描数据集。该模型在这些神经影像数据集上进行训练,以区分健康的脑组织和受中风影响的脑组织。这两种架构的结合既可以进行详细分析,又可以快速处理,使该模型能够适应临床环境。结果表明,该模型在中风识别方面取得了很高的准确率,证明了其有潜力帮助医疗保健专业人员更快、更准确地诊断中风。通过将这种机器学习模型整合到现有的诊断工作流程中,它可以显著缩短诊断时间,实现更早的治疗,并最终改善患者的治疗效果。我们的模型有可能改善患者的治疗效果并减轻中风的经济负担。通过利用这些先进的机器学习技术的力量,该模型旨在提高中风诊断的效率和准确性,与传统方法相比。关键词:中风识别、机器学习、神经影像、诊断模型、Inceptionv3、MobileNet、卷积神经网络 (CNN)
摘要:由于数据量和计算资源的不断增加,深度学习在各个领域取得了许多成功。深度学习在移动和嵌入式设备上的应用越来越受到重视,对移动和嵌入式设备的AI能力进行基准测试和排名成为亟待解决的问题。考虑到模型的多样性和框架的多样性,我们提出了一个基准测试套件AIoTBench,专注于评估移动和嵌入式设备的推理能力。AIoTBench涵盖三种典型的重量级网络:ResNet50,InceptionV3,DenseNet121,以及三种轻量级网络:SqueezeNet,MobileNetV2,MnasNet。每个网络由三个专为移动和嵌入式设备设计的框架实现:Tensorflow Lite,Caffe2,Pytorch Mobile。为了比较和排名设备的AI能力,我们提出了两个统一的指标作为AI分数:每秒有效图像(VIPS)和每秒有效FLOP(VOPS)。目前,我们已经使用基准测试对 5 款移动设备进行了比较和排名。此列表将很快扩展和更新。
糖尿病性视网膜病(DR)是视力障碍的重要原因,表明对早期检测的关键需求和及时干预以避免视觉恶化。诊断DR本质上是复杂的,因为它需要通过经验丰富的特殊IST对复杂的视网膜图像进行细致的检查。这使得对DR的早期诊断对于有效治疗和预防最终失明必不可少。传统的诊断方法,依靠人类对这些医学图像的解释,就准确性和效率而言面临挑战。在本研究中,我们引入了一种新颖的方法,与这些传统方法相比,通过采用先进的深度学习技术,该方法在DR诊断方面具有优异的精度。这种方法的核心是转移学习的概念。这需要我们先前存在的,完善的模型,特别是InceptionResnetV2和InceptionV3,以提取功能和微调选择层,以满足此特定诊断任务的独特要求。同时,我们还提出了一个新设计的模型Diacnn,该模型是针对眼部疾病的分类而定制的。验证提出方法的功效,我们
摘要 - 本文介绍了一项有关使用深度学习技术的手写签名验证的全面研究。本研究旨在应对离线签名验证的挑战,在此任务是自动区分真正的签名与伪造的挑战。所提出的方法利用了最新的深度学习模型,包括Mobilenet,Resnet50,InceptionV3和VGG19与Yolov5结合使用,以实现高精度分类和可靠的伪造检测。在多个基准数据集上评估了该系统,包括Kaggle签名,Cedar,ICDAR和SIGCOMP,在各种现实世界中展示了其有效性和鲁棒性。所提出的方法包括数据预处理技术,以增强输入手写签名图像的质量,从而使模型能够捕获基本功能和模式以进行准确的分类。结果表明,与现有的最新方法相比,提出的方法的优越性在识别真正的特征并准确检测伪造方面达到了出色的准确率(89.8%)。此外,该模型对变化数据集大小和配置的适应性进一步支持其在签名验证任务中实际部署的潜力。这项研究有助于脱机签名验证技术的发展,为确保各种应用程序中手写签名的安全性和真实性提供了可靠,有效的解决方案。
我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
摘要。在研究发现中,1p/19q基因的共同缺失与低级神经胶质瘤中的临床结局相关。预测1P19Q状态的能力对于治疗计划和患者随访至关重要。本研究旨在利用特殊的基于MRI的卷积神经网络进行脑癌检测。尽管Restnet和Alexnet等公共网络可以使用Transfer学习有效地诊断脑癌,但该模型包含了许多与医学图像无关的权重。因此,转移学习模型无法可靠诊断结果。要处理可信赖性问题,我们从头开始创建模型,而不是依赖于预训练的模型。为了启用灵活性,我们将卷积堆叠与辍学和完全连接操作相结合,可以通过减少过度拟合来证明性能。在模型训练期间,我们还补充了给定的数据集并注入高斯噪声。我们使用三倍的交叉验证来训练最佳选择模型。比较InceptionV3,VGG16和MobilenetV2对预训练的模型进行了微调,我们的模型会产生更好的结果。在验证集125个编码和31个未代码图像的验证集中,提议的网络可实现96.37%的F1分数,97.46%的精度,而96.34%的召回在分类1P/19Q Codeletion和Not Codeletion Image时。
对于一系列医学分析应用,脑肿瘤定位和从磁共振成像 (MRI) 中分割脑肿瘤是一项具有挑战性但至关重要的工作。许多最近的研究包括四种模式:即 T1、T1c、T2 和 FLAIR,这是因为每个肿瘤致病区域都可以通过每种脑成像模式进行详细检查。尽管 BRATS 2018 数据集给出了令人印象深刻的分割结果,但结果仍然更复杂,需要更多的测试和更多的训练。这就是为什么本文建议在整幅图像之外的一小部分图像上操作预处理策略,因为这样才能创建一个有效且灵活的脑肿瘤分割系统。在第一阶段,使用不同的分类器(如决策树、SVM、KNN 等)开发集成分类模型,使用小部分的策略将图像分类为肿瘤和非肿瘤类,可以完全解决过度拟合问题并减少使用 inceptionv3 CNN 特征的 YOLO 对象检测器模型中的处理时间。第二阶段是推荐一种高效且基本的级联 CNN (C-ConvNet/C-CNN),因为我们处理每个切片中脑图像的一小部分。级联卷积神经网络模型以两种独立的方式提取可学习的特征。在 BRATS 2018、BRATS 2019 和 BRATS 2020 数据集上,对所提出的肿瘤定位框架进行了广泛的实验任务。三个数据集的 IoU 得分分别为 97%、98% 和 100%。本文详细讨论并介绍了其他定性评估和定量评估。
摘要 - 癫痫是一种常见的神经系统疾病,其特征是在全球范围内影响多达7,000万人的癫痫发作。在生命的头十年中,每150名儿童中大约有一个被诊断出患有癫痫病。脑电图是诊断癫痫发作和其他脑部疾病的重要工具。但是,脑电图的专家视觉分析很耗时。除了减少专家注释时间外,自动癫痫发作检测方法是帮助专家分析脑电图的强大工具。对小儿脑电图中癫痫发作的自动检测的研究已被提出。深度学习算法通常用于小儿癫痫发作检测方法;但是,它们在计算上很昂贵,并且需要很长时间才能开发。可以使用转移学习来解决此问题。在这项研究中,我们在小儿EEG的多个通道上开发了一种基于转移学习的癫痫发作检测方法。公开可用的CHB-MIT EEG数据集用于构建我们的方法。数据集分为训练(n = 14),验证(n = 4)和测试(n = 6)。从10 s EEG信号产生的具有5 s重叠的频谱图用作三个预训练的传输学习模型(RESNET50,VGG16和InceptionV3)的输入。我们小心翼翼地将孩子分成培训或测试集中,以确保测试集是独立的。基于脑电图测试集,该方法具有85.41%的精度,85.94%的召回率和85.49%的精度。此方法有可能协助研究人员和临床医生对小儿脑电图中癫痫发作的自动分析。
