基因组编辑技术发展的最终目标是实现任何细胞或生物体中精准的基因组改变。本文我们描述了原生质体系统,该系统利用预组装的 Cas9 核糖核蛋白 (RNP) 复合物在拟南芥、本氏烟、白菜和亚麻荠中实现精准、高效的 DNA 序列改变。Cas9 RNP 介导的双 gRNA 基因破坏在拟南芥原生质体中可达到约 90% 的插入/缺失。为了便于测试任何 Cas9 RNP 设计,我们开发了两个 GFP 报告基因,从而可以灵敏地检测非同源末端连接 (NHEJ) 和同源定向修复 (HDR),编辑效率分别高达 85% 和 50%。当与最佳单链寡脱氧核苷酸 (ssODN) 供体共转染时,RNP 通过 HDR 对 AtALS 基因的精确编辑达到 7%。值得注意的是,预组装引物编辑器 (PE) RNP 介导的精确诱变导致原生质体中 GFP 报告基因回收率为 50%,基因组中特定 AtPDS 突变的编辑频率高达 4.6%。原生质体中 CRISPR RNP 变体的快速、多功能和高效基因编辑为开发、评估和优化基因和基因组操作的新设计和工具提供了宝贵的平台,适用于多种植物物种。
利用 CRISPR-Cas9 核酸酶系统技术进行基因编辑可被视为纠正多种单基因疾病中的遗传突变最有前途的策略之一。在本文中,我们首次介绍了利用 CRISPR-Cas9 基因编辑纠正地中海地区最常见的 b 0 39 地中海贫血突变的方法。结果表明,在纯合 b 0 39 地中海贫血患者的红系前体细胞上进行 CRISPR-Cas9 纠正 b 0 39 地中海贫血突变后,存在正常的 b 珠蛋白基因。等位基因特异性 PCR 和测序证明了这一点。发现校正后的 b 珠蛋白 mRNA 积累效率高,并且 b 珠蛋白和成人血红蛋白 (HbA) 的相关“从头”产生率高。 CRISPR-Cas9 强制的 HbA 产生水平与游离 a 珠蛋白链过量的显著减少相关。分析了编辑程序的基因组毒性(低插入/缺失和无脱靶)。该方案可能是开发有效编辑 b 0 39 患者 CD34 + 细胞的起点,也是设计联合治疗的起点,联合使用 CRISPR-Cas9 编辑 b 珠蛋白基因和其他治疗方法,例如使用化学诱导剂诱导 HbA 和/或胎儿血红蛋白 (HbF)。
DNA 片段化是基于杂交捕获的短读测序中文库制备过程中的一个基本步骤。迄今为止,人们一直使用超声波来制备适当大小的 DNA,但这种方法会导致大量 DNA 样本损失。最近,研究采用了依赖于 DNA 内切酶酶促片段化的文库制备方法来最大限度地减少 DNA 损失,尤其是在纳米量样本中。然而,尽管它们被广泛使用,但酶促片段化对所得序列的影响尚未得到仔细评估。在这里,我们对使用超声波和酶促片段化方法制备的相同肿瘤 DNA 样本的体细胞变异进行了成对比较。我们的分析显示,与通过超声波创建的文库相比,内切酶处理的文库中反复出现的人工 SNV/indel 数量要多得多。这些人工制品以基因组背景下的回文结构、测序读取中的位置偏差和多核苷酸替换为标志。利用这些独特的特性,我们开发了一种过滤算法,可以高特异性和灵敏度地区分真正的体细胞突变和人为噪声。噪声消除恢复了肿瘤样本中突变特征的组成。因此,我们提供了一种信息学算法来解决因内切酶介导的碎片化而产生的测序错误,这是本研究中首次强调的。
TALE 碱基编辑器是最近添加到基因组编辑工具箱中的。这些分子工具是转录激活因子样效应结构域 (TALE)、分裂 DddA 脱氨酶半体和尿嘧啶糖基化酶抑制剂 (UGI) 的融合,它们具有直接编辑双链 DNA 的独特能力,将胞嘧啶 (C) 转化为胸腺嘧啶 (T)。为了剖析 TALE-BE 的编辑规则,我们将数十个靶向核基因组位点的 TALE-BE 的筛选与基于将 TALE-BE 靶位点集合精确敲入细胞基因组的中/高通量策略相结合。后一种方法使我们能够深入了解 cellulo 中的编辑规则,同时排除不同基因组位点之间的表观遗传和微环境差异等混杂因素。利用获得的知识,我们设计了靶向 CD52 的 TALE-BE,并实现了非常高的基因敲除频率(高达 80% 的表型 CD52 敲除)。我们进一步证明 TALE-BE 仅产生微不足道的插入/缺失和副产物。最后,我们将两种分子工具(TALE-BE 和 TALEN)结合起来进行多重基因组工程,产生高水平的双基因敲除(~75%),而不会在两个靶位点之间产生易位。
该检测采用单一 DNA 提取方法,从常规 FFPE 活检或手术切除标本中提取 50-1000 ng DNA,构建全基因组散弹枪文库,并基于杂交捕获 309 个癌症相关基因的所有编码外显子、1 个启动子区域、1 个非编码 RNA (ncRNA) 以及 34 个常见重排基因的选定内含子区域,其中 21 个还包括编码外显子(请参阅下表 2 和表 3,了解 F1CDx 中包含的基因完整列表)。因此,该检测总共可检测到 324 个基因的变异。使用 Illumina ® HiSeq 4000 平台,杂交捕获选定的文库可进行高均匀深度测序(目标中位覆盖率 > 500X,覆盖率 > 100X 时外显子覆盖率 > 99%)。序列数据使用定制的分析流程进行处理,该流程旨在检测所有类型的基因组变异,包括碱基替换、插入/缺失、拷贝数变异(扩增和纯合缺失)和选定的基因组重排(例如基因融合)。此外,还将报告基因组特征,包括微卫星不稳定性 (MSI)、肿瘤突变负担 (TMB) 和阳性同源重组缺陷 (HRD) 状态(tBRCA 阳性和/或 LOH 高)。
摘要:在拟南芥中,含环的E3泛素连接酶高表达的高响应基因1(HOS1)是冷信号传导的主要调节剂。在这项研究中,进行了第一个外显子中HOS1基因的CRISPR/CAS9介导的靶向诱变。DNA测序表明,由HOS1的基因组编辑引入的固定插入导致出现过早的停止密码子,从而破坏了开放的阅读框架。将获得的HOS1 CAS9突变植物与SALK T-DNA插入突变体(HOS1-3线)进行了比较,就其对非生物胁迫的耐受性,二级代谢产物的积累和参与这些过程的基因表达水平的积累而言。在暴露于冷应激后,在HOS1-3和HOS1 Cas9植物中都观察到了冷响应基因的耐受性和表达。HOS1突变会导致转化细胞中植物甲状腺素合成的变化。葡萄糖醇(GSL)的含量被1.5次下调,而转基因植物中氟乙醇糖苷的上调为1.2至4.2倍。还改变了拟南芥中次级代谢的相应MYB和BHLH转录因子的转录物丰度。我们的数据表明,HOS1调节的下游信号传导与植物甲壳虫生物合成之间存在关系。
CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。
许多玉米(Zea Mays)基因型在传统的遗传转化方案中表现出的顽固性对基因组编辑(GE)在这一主要农作物中的大规模应用(GE)构成了重大挑战。尽管一些玉米基因型被广泛用于遗传转化,但它们不适合在领域试验或商业应用中进行农艺学测试。尽管在热带地区发生了相当多的玉米产量,但可转化的玉米线的优势加剧了这一挑战。异位表达是克服低效率和基因型依赖性的一种有前途的方法,旨在实现玉米中的“普遍”转化和GE能力。在这里,我们使用基于MR的农杆菌介导的转化方案报告了具有农学相关的热带玉米线的成功GE,先前已针对B104温带近交系列进行了优化。为此,我们使用了一种基于CRISPR/CAS9的构造,该结构旨在敲除蛋白质黄色(VYL)基因的敲除,这导致了易于识别的表型。在从B104和三个热带品系制备的原生质体中验证了Vyl处的突变,无论在两个热带线中,在Vyl靶位点的种子区域存在单个核苷酸多态性(SNP)。三个超过五个热带线可以转化,效率高达6.63%。非常明显,在目标部位呈现的Indels的回收事件中有97%是由下一代继承的。我们观察到基于CRISPR/Cas9的构造对Vyl Paralog Vyl-Modifier的靶向活动,这可能部分是由于
过去几千年来,传统育种已成功选育出有益的食品、饲料和纤维作物特性。上个世纪,技术取得了重大进步,特别是在标记辅助选择和诱导遗传变异的产生方面,包括过去几十年通过突变育种、基因改造和基因组编辑取得的进步。虽然传统品种开发和转基因基因改造的监管框架已广泛建立,但许多地区缺乏或仍在制定基因组编辑的监管框架。特别是,基因组编辑植物中缺乏“外来”重组 DNA,并且由此产生的 SNP 或 INDEL 与传统育种中的 SNP 或 INDEL 难以区分,这对制定新立法提出了挑战。如果基因组编辑和其他新型育种技术的产品不具有转基因,并且可以通过传统方法产生,我们认为,应用对传统育种和新型食品已经存在的同等立法监督是合乎逻辑和相称的。本综述分析了传统植物育种活动中可选择的自发和诱发遗传变异的类型和规模。它提供了一个基准,可以据此判断基因组编辑技术或其他反向遗传方法带来的遗传变化是否确实与使用传统植物育种方法经常发现的变化相当。
摘要:正向遗传筛选已显示出有害突变的后果;然而,它们最适合于繁殖率高、繁殖量大的模式生物。此外,研究人员必须如实地识别表型变化,即使是细微的变化,才能充分发挥筛选的优势。反向遗传方法也探测基因型与表型的关系,只是遗传目标是预先定义的。直到最近,反向遗传方法还依赖于非基因组基因沉默或相对低效的同源性依赖基因靶向来产生功能丧失的产物。幸运的是,成簇的规律间隔的短回文重复序列 (CRISPR)/Cas 系统的灵活性和简单性彻底改变了反向遗传学,几乎可以随意对任何生物体中的任何基因进行精确诱变。成功整合插入/缺失 (INDEL) 和无义突变,从表面上看,会产生预期的功能丧失表型,但事实证明,这些整合几乎没有效果,即使其他基因沉默方法显示出强大的功能丧失后果。结果之间的分歧提出了有关我们对基因型到表型的理解的重要问题,并强调了中心法则中的补偿能力。本综述描述了最近似乎存在基因组补偿的研究,讨论了可能的补偿机制,并考虑了对强大的基因功能丧失研究很重要的因素。