摘要动物神经系统在处理感官输入方面非常高效。神经形态计算范式旨在硬件实现神经网络计算,以支持构建大脑启发式计算系统的新解决方案。在这里,我们从果蝇幼虫神经系统中的感官处理中获得灵感。由于其计算资源非常有限,只有不到 200 个神经元和不到 1,000 个突触,幼虫嗅觉通路采用基本计算将外围广泛调节的受体输入转换为中央大脑中节能的稀疏代码。我们展示了这种方法如何让我们在脉冲神经网络中实现稀疏编码和刺激模式的可分离性提高,并通过软件模拟和混合信号实时神经形态硬件上的硬件仿真进行了验证。我们验证了反馈抑制是支持整个神经元群体中空间域稀疏性的中心主题,而脉冲频率适应和反馈抑制的组合决定了时间域中的稀疏性。我们的实验表明,这种小型的、生物现实的神经网络在神经形态硬件上有效地实现,能够实现全时间分辨率下感官输入的并行处理和有效编码。
摘要 — 受大脑启发的基于事件的神经形态处理系统已成为一种有前途的技术,特别是用于生物医学电路和系统。然而,神经网络的神经形态和生物实现都具有关键的能量和内存限制。为了最大限度地减少多核神经形态处理器中内存资源的使用,我们提出了一种从生物神经网络中汲取灵感的网络设计方法。我们使用这种方法设计了一种针对小世界网络优化的新路由方案,同时提出了一种硬件感知的布局算法,该算法优化了小世界网络模型的资源分配。我们用一个典型的小世界网络验证了该算法,并给出了从中衍生的其他网络的初步结果。索引术语 — 编译器、神经形态处理器、分层路由、小世界网络、多核、扩展、皮质网络
摘要 - 急流尖峰神经网络(SNN)的灵感来自生物神经系统的工作原理,这些原理提供了独特的时间动态和基于事件的处理。最近,通过时间(BPTT)算法的错误反向传播已成功地训练了局部的SNN,其性能与复杂任务上的人工神经网络(ANN)相当。但是,BPTT对SNN的在线学习方案有严重的局限性,在该场景中,需要网络同时处理和从传入数据中学习。特别是,当BPTT分开推理和更新阶段时,它将需要存储所有神经元状态以及时计算重量更新。要解决这些基本问题,需要替代信贷分配计划。在这种情况下,SNN的神经形态硬件(NMHW)实现可以极大地利用内存计算(IMC)概念,这些概念(IMC)概念遵循记忆和处理的脑启发性搭配,进一步增强了他们的能量效率。在这项工作中,我们利用了与IMC兼容的生物学启发的本地和在线培训算法,该算法近似于BPTT,E-Prop,并提出了一种支持使用NMHW的经常性SNN推理和培训的方法。为此,我们将SNN权重嵌入了使用相位变更内存(PCM)设备的内存计算NMHW上,并将其集成到硬件中的训练设置中。索引术语 - 在线培训,尖峰神经网络,神经形态硬件,内存计算,相位变化内存我们使用基于PCM的仿真框架和由256x256 PCM Crossbar阵列的14NM CMOS技术制造的内存内计算核心组成的NMHW开发了模拟设备的精确度和瑕疵的方法。我们证明,即使对4位精确度也是强大的,并实现了32位实现的竞争性能,同时为SNN提供了在线培训功能,并利用了NMHW的加速收益。
从左边站出来:保罗·马尔迪尼(Paolo Maldini)(上尉),克里斯蒂安·维埃里(Christian Vieri),保罗·内格罗(Paolo negro),克里斯蒂安·潘奇奇(Christian Panucci),菲利波(Filippo Inzaghi),吉安利吉·布芬(Gianluigi Buffon); Accosciati:Eusebio di Francesco,Antonio Conte,Fabio Cannavaro,Demetrio Albertini,Diego Fuser。