山脉 - 海湾博士,医学博士Maja Thiele,医学博士Isabel Graupera,Elisa Pose,医学博士,威廉·皮尔医学博士Kleef,Mathias Reichert,医学博士,教授医学博士Dominique Roulot,医学博士John M Peric,教授医学博士JörnMSchattenberg教授伊曼纽尔(Emmanuel)至医学博士Tsochatztis教授医学博士Indra Neil Guha,马里诺医学博士,医学博士Nier,Anne Llorca,医学博士,Anita。 Harry J by Koning博士,Fernando Cucccietti博士,教授迈克尔·曼斯(Michael Manns),医学博士,教授医学博士Philip N Newsome,医学博士RubénHernaez,教授Align M Allen,医学博士,教授保罗·安吉利(Paolo Angeli),医学博士肯尼亚医学博士的罗伯特·J(Robert J),教授医学博士汤姆·H·卡尔森(Tom H Karlsen)教授医学博士彼得·威尔士(Peter Wales)教授医学博士Vincent Wai-Sung Wong教授NúriaFabrellas博士,教授洛朗城堡医学博士亚历山大·克拉格(Alexander Krag)医学博士弗兰克·拉默特(Frank Lammert)医学博士,教授医学博士Patrick S Kamath和教授Liverscreen
1作为全球倡议的蓝色经济; Pawan G. Patil,John Virdin和Charles S. Colgan 2蓝色的经济机会和更广泛的加勒比海挑战;彼得·克莱格(Peter Clegg),罗宾马洪(Robinmahon),帕特里克·麦康尼(Patrick McConney)和榛树A.奥克斯福德(Hazel A. Oxenford)3蓝色经济冠军和失败者在更广泛的加勒比海地区; Nicole Leotaud,Alexander Girvan和Sasha Jattansingh 4海洋生态系统的州,该州支持更广泛的加勒比海蓝色经济体; Hazel A. Oxenford和Robin Mahon 5气候变化对更广泛的加勒比海蓝色经济体的影响;迈克尔·泰勒(Michael A. Taylor),蒙娜(Mona K. LORNA INNISS,LUCIA FANNING,ROBIN MAHON和MARGAUX REMOND 7生态系统服务的估值,作为对蓝色经济体投资的基础;彼得·舒曼(Peter W. Schuhmann); 8国家海洋司法机构作为蓝色经济发展的基础;帕特里克·麦康尼(Patrick McConney)和萨尼亚·康普顿(Sanya Compton)9区域海洋治理;在更广泛的加勒比海地区应对蓝色经济的挑战和机遇的必要性;露西亚·范宁(Lucia Fanning)和罗宾·马洪(Robin Mahon)10渔业是加勒比海更广泛的蓝色经济体的关键组成部分; Hazel A. Oxenford和Patrick McConney; 11加勒比海和蓝色经济的旅游业 - 两者可以保持一致吗?Peter Clegg,Janice Cumberbatch和Karima Degia 12在发展中的蓝色经济体中运输和海洋运输的作用; David Jean-Marie 13可再生能源:新兴的蓝色经济领域; Indra Haraksingh 14加勒比海经济中的石油和天然气部门是否有未来?Peter Clegg,Janice Cumberbatch和Karima Degia 12在发展中的蓝色经济体中运输和海洋运输的作用; David Jean-Marie 13可再生能源:新兴的蓝色经济领域; Indra Haraksingh 14加勒比海经济中的石油和天然气部门是否有未来?Anthony T. Bryan 15蓝色经济体中深度矿物质和海洋遗传资源的未来; Laleta Davis-Mattis 16废物管理在为蓝色经济支撑的基础上的作用;克里斯托弗·科宾(Christopher Corbin)17在更广泛的加勒比海地区为蓝色经济提供资金;贾斯汀·拉姆(Justin Ram)和唐娜·凯杜·杰弗里(Donna Kaidou-Jeffrey)18限制和支持蓝色经济的机会 - 外交官的观点;罗纳德·桑德斯爵士(Sir Ronald Sanders)爵士19在更广泛的加勒比海地区的蓝色经济:机会,局限性和考虑因素;彼得·克莱格,罗宾·马洪,帕特里克·麦康尼和黑榛
准备了本报告及其分析的团队。This was led by Emma Pinchbeck, James Richardson, Emily Nurse, and Eoin Devane, and Includeed Sasha Abraham, Rose Armitage, Florence Bate, Simona Battipaglia, Owen Blake, George Blake, Sandra Bogelein, Marilta Calore, Christian Christian Calvillo Munoz, Rachel Carr-whitworth, Lidice Cruz-rodriguez, Selina Dagleless, Banda De Farias Letti, Victoria de La Cruz, Ramesh Denoarine, Joshua Deru, Tom Doks, Caitlin Douglas, Kim Dowsett, Kierron Driscoll, Ahmed Gailani, Francesco Maria Giacomini, Ruth Gregg, Esther Harris, Cara Hawkins, Rachel Hay, Cilla Hellgren, Robbie Herring, Gemma霍姆斯,黛西·詹姆森,阿丽亚娜·杰莎,卢克·琼斯,萨姆·卡尔斯莱克,艾玛·凯尼,米里亚姆·凯纳德,格蕾丝·麦克雷德,卢克·麦克斯菲尔德,莫里斯·麦金太斯,亚伦·麦克马洪,亚伦·麦克马洪,理查德·米勒,理查德·米尔尔,理查德·米勒,比·纳特兹勒,比·纳特斯勒,贝洛·纳特莫(Bea Natzler),克洛伊·纳莫(Chloe Nemo),克里斯·尼玛(Chloe Nemo),克里斯·帕克(Chris Parker),艾尔娜·帕特(Elna Parken) Schroder, viv Scott, Penny Law, Olivia Shears, Marcus Shepheard, Brainy Sheridan, Joris Simatis, Thomas Smith, Rachael Steller, James Taylor, Feliicity Taylor, Seán Taylor, Indra Thillainatan, Sam Van Stroud, Emma Vause, Sophee power, zelna weich, chloe welsh, eveline white, Hannah威尔,凯特·威廉姆森,路易斯·沃辛顿,查理·赖特,肯·赖特和苏西·撰写。This was led by Emma Pinchbeck, James Richardson, Emily Nurse, and Eoin Devane, and Includeed Sasha Abraham, Rose Armitage, Florence Bate, Simona Battipaglia, Owen Blake, George Blake, Sandra Bogelein, Marilta Calore, Christian Christian Calvillo Munoz, Rachel Carr-whitworth, Lidice Cruz-rodriguez, Selina Dagleless, Banda De Farias Letti, Victoria de La Cruz, Ramesh Denoarine, Joshua Deru, Tom Doks, Caitlin Douglas, Kim Dowsett, Kierron Driscoll, Ahmed Gailani, Francesco Maria Giacomini, Ruth Gregg, Esther Harris, Cara Hawkins, Rachel Hay, Cilla Hellgren, Robbie Herring, Gemma霍姆斯,黛西·詹姆森,阿丽亚娜·杰莎,卢克·琼斯,萨姆·卡尔斯莱克,艾玛·凯尼,米里亚姆·凯纳德,格蕾丝·麦克雷德,卢克·麦克斯菲尔德,莫里斯·麦金太斯,亚伦·麦克马洪,亚伦·麦克马洪,理查德·米勒,理查德·米尔尔,理查德·米勒,比·纳特兹勒,比·纳特斯勒,贝洛·纳特莫(Bea Natzler),克洛伊·纳莫(Chloe Nemo),克里斯·尼玛(Chloe Nemo),克里斯·帕克(Chris Parker),艾尔娜·帕特(Elna Parken) Schroder, viv Scott, Penny Law, Olivia Shears, Marcus Shepheard, Brainy Sheridan, Joris Simatis, Thomas Smith, Rachael Steller, James Taylor, Feliicity Taylor, Seán Taylor, Indra Thillainatan, Sam Van Stroud, Emma Vause, Sophee power, zelna weich, chloe welsh, eveline white, Hannah威尔,凯特·威廉姆森,路易斯·沃辛顿,查理·赖特,肯·赖特和苏西·撰写。
Stephan Buch ϕ, 1.2 Hamish Innes ϕ, 3.4 Philipp Ludwig Lutz, 5 Hans Dieter Nischhalke, 5 Jens U Marquardt, 6 Janett Fischer, 7 Karl Heinz Weiss, 8 Jonas Rosendahl ϕ, 9 Astrid Marot, 10,11 Marcin Krawczyk, 12.13 Markus Casper, 12 Florian Eyer, 14 Arndt Vogel,15 Silke Marhenke,15 Johann von Felden ,16 Rohini Sharma ϕ,17 Stephen Rahul Atkinson,17 Andrew McQuillin,Andrew McQuillin,18 Jacob Nattermann 16,16,5 Clemens Schafmayer,19 Andre Franke ϕ,20 Andre Franke ϕ,20 Andre franke ϕ Stefan, 22 Stefan, 22 Stefan, 22 Stefan, 22 Sulk, 22 Veera Raghavan Thangapandi, 2.22 Mario Brosch, 2.22 Carolin Lackner, 23 Rudolf e Stauber, 24 Ali Canbay ϕ, 25 Alexander Link, 26 Thomas Reiberger ϕ, 27 Mattias Mandorfer , 27 Georg Semmler, 27 BernhardStephan Buch ϕ, 1.2 Hamish Innes ϕ, 3.4 Philipp Ludwig Lutz, 5 Hans Dieter Nischhalke, 5 Jens U Marquardt, 6 Janett Fischer, 7 Karl Heinz Weiss, 8 Jonas Rosendahl ϕ, 9 Astrid Marot, 10,11 Marcin Krawczyk, 12.13 Markus Casper, 12 Florian Eyer, 14 Arndt Vogel,15 Silke Marhenke,15 Johann von Felden ,16 Rohini Sharma ϕ,17 Stephen Rahul Atkinson,17 Andrew McQuillin,Andrew McQuillin,18 Jacob Nattermann 16,16,5 Clemens Schafmayer,19 Andre Franke ϕ,20 Andre Franke ϕ,20 Andre franke ϕ Stefan, 22 Stefan, 22 Stefan, 22 Stefan, 22 Sulk, 22 Veera Raghavan Thangapandi, 2.22 Mario Brosch, 2.22 Carolin Lackner, 23 Rudolf e Stauber, 24 Ali Canbay ϕ, 25 Alexander Link, 26 Thomas Reiberger ϕ, 27 Mattias Mandorfer , 27 Georg Semmler, 27 Bernhard
1。对重金属(CR(VI)和CD(II))基于农业废物的吸附剂的合成,表征和吸附行为的全面综述,J。DispersionScience和Technology,45(2),45(2),171-202,2023,171-202,2023,Ritu Gupta,Rittu Kumar Gupta,sudhir Kumar Gupta&Chhagan&Chhagan&Chhagan lal lal lal fincter(2)。2。化学修饰的菠萝蜜叶是一种低成本的农业废物吸附剂,用于从合成废水中去除Pb(II)J。危险材料前进,10,100292,2023,Ritu Gupta,Sudhir Kumar Gupta,Chhagan Lal Gehlot和Indra Bahadur(影响因素:4.8)。3。对1.75 meV n 5+离子的光谱分析辐照聚苯乙烯膜,并寻求富勒烯和其他产品的反应机理,J。辐射物理和化学,214,111300,2023,Shiv Govind Prasad&Chhagan Lal(影响因子:2.9)。4。Modification of Optical Bandgap and Formation of Carbonaceous Clusters Due to 1.75 MeV N 5+ Ion Irradiation in PET Polymers and Search for Chemical Reaction Mechanisms, J. Bio-interface Research in Applied Chemistry,13(1),1-17,2023, Shiv Govind Prasad, Chhagan Lal, Kriti Ranjan Sahu, Udayan De (Impact factor: 1.949).5。一种从煤灰废物中合成低成本沸石的贵族和经济的方法,J。材料和加工技术的进步,8,301-319,2022,Virendra Kumar Yadav,R。Suriyaprabha,Gajendra Kumar Inwati,Nitin Gupta,Bijendra Gupta,Bijendra Singh,Chhagan Lal,Chhagan Lal,Pankaj Kumar Lal,Pankaj Kumar,Meena Godha godha&Haresh kaleshasariyya(影响factial faction faction faction faction faction faction faction faction faction faction faction faction faction faction faction factic:2.37)。6。对农业废物的处理方法的综述,来自废水,分离科学和技术的PB(II)离子隔离的广告,57(17),2735-2762,2022,Ritu Gupta,Ritu Gupta,Chhagan Lal Gehlot,Sunil Kumar Yadav(Sunil Kumar Yadav(影响因素:2.7999)。
摘要 早期吠陀经经常提到某些神灵,如雷神因陀罗和阿耆尼,他们通过火祭在人类和诸神之间传递信息。其中一些神灵在后来的印度教中仍然存在,而其他神灵则随着时间的推移而减弱或转变为其他神灵。理解书籍在我们生活中的重要性的另一个重要方面是,书籍是最具创造性的艺术形式之一。我们阅读的每本书都有能力将我们带入一个充满几个惊人人物的不同世界。大数据、云计算、人工神经网络和机器学习的出现使工程师能够创造出能够模拟人类智能的机器。本研究将能够感知、识别、学习、反应和解决问题的机器称为人工智能 (AI)。人工智能提高了人类努力的速度、精度和有效性。在金融机构中,人工智能技术可用于识别哪些交易可能存在欺诈行为,采用快速准确的信用评分,以及自动执行手动密集型数据管理任务。“第一代”人工智能可以通过应用基于规则的专家知识来支持人类的智力工作,“第二代”人工智能可以通过统计/搜索模型找到最优解决方案,而“第三代”人工智能将基于大脑模型大幅提高识别性能。奥义书和 Advaita Siddhanta 中存在的现代科学元素以及玛雅的本质与现代科学意识相似。这种意识进一步用于理解人类的心理过程及其建模方式,为人工智能的自然语言理解领域做出贡献。关键词:人工智能的起源、古印度文献中的人工智能、印度人工智能的来源、人工智能中的吠陀经和梵文、人工智能的介绍 书籍在每个学生的生活中都扮演着重要的角色,它们将学生带入思想世界,提供有关外部世界的信息,促进阅读、写作和交流,提高记忆力和洞察力。书籍在我们生活中的重要性不容小觑,因为它们不仅帮助我们扩展视野,而且还充当我们与周围世界之间的门户。它们让我们忙碌和消遣,充当生存工具。您是否对古代智慧与现代智慧之间的关系感兴趣?您是否曾经想过古代书籍对当今社会的智慧有多重要?阅读本文是为了了解古代印度文本和其他解释在现代智慧背景下的重要性。要了解这意味着什么,我们必须首先阐明书籍在我们日常生活中的作用。书籍在我们的生活中如此重要的最大原因之一是它们是我们最亲密的朋友。朋友是我们生活中的重要组成部分。我们无法想象没有好朋友的生活。同样,书籍就像最好的朋友;它们不断激励我们成为最好的自己。书籍就像好朋友,用知识充实我们的心灵。愿意从书籍中学习很多东西,它们帮助我们克服挫折并发展我们的思维。关于书籍在我们生活中的重要性,我们应该了解的另一件重要的事情是,书籍是最美丽的事物之一。我们读过的每本书都有能力将我们带到一个充满伟大人物的另一个世界。这本书开启了我们的创造力,成为我们逃离现实生活烦恼、进入梦想世界的大门。这些读物包括自然界传授的诗篇和礼仪文字,并将它们用作其他现代印度教徒最深刻信仰的基础。早期的吠陀经中提到了托尔、因陀罗和阿耆尼等神灵,他们点燃火焰来在人类和神灵之间传递信息。此后,一些神灵继续存在于印度教中,而其他神灵随着时间的推移而减少或被其他神灵取代。吠陀经被认为是永恒的启示和永恒的真理,构成了当今许多印度教教义的基础。(参考:https://www.khanacademy.org/Humanities)虚假洞察力的一部分大数据、云计算、神经系统和机器学习的兴起使工程师能够制造机器人来重现洞察力。这种基于这项技术并能够看到、知道、学习、反应和理解事物的功能被称为人工智能(AI)。虚假洞察力,提高速度,
摘要。红树林生态系统在碳存储中可以发挥关键作用,因为它是全球碳密集的生态系统之一。无人驾驶飞机(UAV)技术的进步有可能以更详细,更有效和快速的方式分析红树林的碳含量。Langkat地区的修复森林仍然相对广泛,密度中度至高密度,需要评估其地面以上的潜在碳储量。这项研究旨在使用无人机技术分析红树林的地面上的生物量潜力和碳储量。主要数据包括由UAV捕获的航空照片,结合了数字表面模型(DSM)和数字地形模型(DTM)。红树林冠层高度是通过从DTM中减去DSM并将其转换为Lorey高度(LH)来计算的。还进行了现场调查,以测量胸高的总树冠高度和直径以获得LH,然后将其转化为红树林生物量。森林修复中红树林植被的最高顶篷高度为28 m,位于森林边缘的东北和南侧。分别在恢复森林的地面上方的生物量潜力分别为0至890 mg ha -1和0至445 mgc ha -1。具有7.82公顷的研究区域,研究区域中储存的地面上方的估计碳电位约为3,479.90 mgc。关键词:地上生物量,碳存储,碳库存映射,无人机。红树林映射中的无人机技术,尤其是在修复森林中的无人机技术,为在小规模上收集非常高分辨率的空间数据提供了机会,从而确保了准确的空间数据收集。简介。红树林在热带地区的碳存储中起着重要作用。这种红树林功能可以帮助减少碳排放和全球变暖(Nuraini et al 2021)。红树林生态系统可以在碳存储中发挥至关重要的作用,这是全球碳密集的生态系统之一。该生态系统也可以充当长期碳存储,捕获的碳是全球其他森林的四倍(Indra等,2022年)。增加的碳储量和碳储存生态系统(包括红树林生态系统)对于在国家和国际水平上实现减少碳排放目标至关重要。
·“最佳纸张奖”,第14届未来网络国际会议(NOF),2023年10月4日至6日,土耳其伊兹米尔。S. Kopmann&M。Zitterbart(2023):Emind:有效和微流对分布式网络攻击的独立检测。- 2023年第14届未来网络国际会议(NOF),伊兹密尔,土库耶:159–167。·“最佳演示奖”,第七届系统可靠性与安全会议(ICSRS 2023),11月22日至24日,2023年,意大利博洛尼亚。M.斋月,G。Elbez&V。Hagenmeyer(2023):可验证的智能网格的无证书签名方案。 - 2023第七届系统可靠性与安全国际会议(ICSRS),意大利博洛尼亚:181-189。 ·“公共服务奖学金preis”,Alfons- und Gertrud-Kassel-Stiftung,2023年11月,Frankfrt/Main:Indra Spiecker Gen。 döhmann。 ·“顶级审稿人奖”,ACM计算机和通信安全会议(CCS 2023),美国德克萨斯州奥斯汀市11月26日至30日,美国德克萨斯州:Patricia Arias Cabarcos。 ·“顶级审稿人奖”,年度计算机安全应用会议(ACSAC 2023),12月4日至8日,2023年,美国德克萨斯州奥斯汀:Christian Wressnegger。 ·“论文”(论文奖),Gesellschaftfürdatenschutz und datenSicherheit(GDD),2023年11月,科隆。 S。Thiebes(2022):对遗传隐私及其在遗传数据共享中的作用的社会技术分析。 - 博士学位论文。 KARSRUHE KIT经济与管理部。 ·“ Youngwomen4or Award(YW4OR2023)”,智慧(社会上的女性:从事运营研究与管理科学),2023年12月:Emilia Grass。 - 硕士论文。M.斋月,G。Elbez&V。Hagenmeyer(2023):可验证的智能网格的无证书签名方案。- 2023第七届系统可靠性与安全国际会议(ICSRS),意大利博洛尼亚:181-189。·“公共服务奖学金preis”,Alfons- und Gertrud-Kassel-Stiftung,2023年11月,Frankfrt/Main:Indra Spiecker Gen。 döhmann。·“顶级审稿人奖”,ACM计算机和通信安全会议(CCS 2023),美国德克萨斯州奥斯汀市11月26日至30日,美国德克萨斯州:Patricia Arias Cabarcos。·“顶级审稿人奖”,年度计算机安全应用会议(ACSAC 2023),12月4日至8日,2023年,美国德克萨斯州奥斯汀:Christian Wressnegger。·“论文”(论文奖),Gesellschaftfürdatenschutz und datenSicherheit(GDD),2023年11月,科隆。S。Thiebes(2022):对遗传隐私及其在遗传数据共享中的作用的社会技术分析。- 博士学位论文。KARSRUHE KIT经济与管理部。 ·“ Youngwomen4or Award(YW4OR2023)”,智慧(社会上的女性:从事运营研究与管理科学),2023年12月:Emilia Grass。 - 硕士论文。KARSRUHE KIT经济与管理部。·“ Youngwomen4or Award(YW4OR2023)”,智慧(社会上的女性:从事运营研究与管理科学),2023年12月:Emilia Grass。- 硕士论文。·“ 2023年IT Innovation Award”,富士通,Next E.V.,2023年12月,杜塞尔多夫。Y. Erb(2023):从负担到业务价值 - 组织如何使用雾计算来创造业务价值?KARSRUHE KIT经济与管理部。 ·“德国Famelab”,《科学传播竞赛》,2024年4月12日,卡尔斯鲁厄。 银牌和观众奖。 有关差异隐私和轨迹匿名化的演示:Patricia Guerra Balboa。 ·“杰出纸奖”,关于可用安全和隐私的NDSS研讨会(USEC 2024),2月26日至2024年3月1日,美国加利福尼亚州圣地亚哥。 F. Sharevski,M。Mossano,M.F。 Veit,G。Schiefer和M. Volkamer(2024):通过自然主义环境中的QR码探索网络钓鱼威胁。 ·“最有影响力的纸张奖”,第15届ACM/SPEC国际绩效工程会议(ICPE 2024),5月7日至11日,2024年,英国伦敦南肯辛顿。 D. Perez-Palacin&R。Mirandola(2014):自适应系统建模中的不确定性:分类法和可用性评估的例子。 - ICPE’14:第五届ACM/规格国际仪式工程会议论文集,爱尔兰都柏林:3-14。KARSRUHE KIT经济与管理部。·“德国Famelab”,《科学传播竞赛》,2024年4月12日,卡尔斯鲁厄。银牌和观众奖。有关差异隐私和轨迹匿名化的演示:Patricia Guerra Balboa。·“杰出纸奖”,关于可用安全和隐私的NDSS研讨会(USEC 2024),2月26日至2024年3月1日,美国加利福尼亚州圣地亚哥。F. Sharevski,M。Mossano,M.F。 Veit,G。Schiefer和M. Volkamer(2024):通过自然主义环境中的QR码探索网络钓鱼威胁。 ·“最有影响力的纸张奖”,第15届ACM/SPEC国际绩效工程会议(ICPE 2024),5月7日至11日,2024年,英国伦敦南肯辛顿。 D. Perez-Palacin&R。Mirandola(2014):自适应系统建模中的不确定性:分类法和可用性评估的例子。 - ICPE’14:第五届ACM/规格国际仪式工程会议论文集,爱尔兰都柏林:3-14。F. Sharevski,M。Mossano,M.F。Veit,G。Schiefer和M. Volkamer(2024):通过自然主义环境中的QR码探索网络钓鱼威胁。·“最有影响力的纸张奖”,第15届ACM/SPEC国际绩效工程会议(ICPE 2024),5月7日至11日,2024年,英国伦敦南肯辛顿。D. Perez-Palacin&R。Mirandola(2014):自适应系统建模中的不确定性:分类法和可用性评估的例子。- ICPE’14:第五届ACM/规格国际仪式工程会议论文集,爱尔兰都柏林:3-14。
新一代红外传感器 这个为期四年的项目首次让欧盟红外 (IR) 产品制造商联合获得先进的 CMOS 技术来设计新的红外传感器 由 10 个成员组成的联盟旨在获得欧洲主权,为未来的国防系统生产高性能红外传感器 法国格勒诺布尔,2023 年 1 月 10 日——Lynred 是一家为航空航天、国防和商业市场提供高质量红外探测器的全球领先供应商,今天宣布启动 HEROIC,这是一项欧洲国防基金项目,旨在开发用于下一代红外 (IR) 传感器的高度先进的电子元件,同时巩固这些最先进产品在欧洲的供应链。 HEROIC(高效读出集成电路)是由 Lynred 牵头的 10 个欧洲合作伙伴组成的联盟,是一个为期四年的项目,于本月启动,预算约为 1900 万欧元( 1980 万美元),其中欧洲国防基金出资 1800 万欧元( 1880 万美元)。HEROIC 是首个将欧洲红外制造商(其中几家是竞争对手)聚集在一起以战略性地解决共同问题的此类合作项目。该项目的主要目标是增加使用新型欧洲先进 CMOS 技术的渠道和灵活性,该技术为开发下一代高性能红外传感器提供了关键能力——这些传感器将具有更小的像素和先进的功能,可用于国防应用。总体目标之一是使欧洲获得生产高性能红外传感器的技术主权。联盟成员包括三家红外制造商:AIM(德国)、项目负责人 Lynred(法国)和 Xenics(比利时);四家系统集成商:Indra(ES)、Miltech Hellas(GR)、Kongsberg(NO)和 PCO SA(PL);一家组件提供商:IC 开发商 Ideas(NO),以及两家研究机构 CEA-Leti(FR)和塞维利亚大学(ES)。Lynred 首席战略官 David Billon-Lanfrey 表示:“Lynred 很自豪能参与这个改变游戏规则的项目,该项目旨在确保欧洲在红外传感器设计和供应方面的工业主权。该项目代表欧洲红外制造商获得与各种红外探测器和 2D/3D 架构兼容的卓越 CMOS 技术的第一阶段,同样重要的是,使其在强大的欧盟供应链中可用。”获得联盟合作伙伴从未有机会访问的最新先进 CMOS 技术对于下一代读出集成电路 (ROIC) 的可持续设计至关重要。其共同指定的平台将使每个联盟合作伙伴能够追求各自的技术路线图,并更有效地满足 2030 年后国防系统的更高性能期望。“HEROIC 项目将使 AIM 能够开发基于欧洲硅 CMOS 技术的先进 ROIC,作为其下一代红外传感器的重要组成部分,”Rainer Breiter 说,AIM IR 模块项目副总裁。“我们期待与我们的合作伙伴一起采用这种共同的方法,获取最新的先进 CMOS 技术。”
原创文章 增强年轻学习者的运动教育能力:通过教学游戏来理解“无脑学校”的耻辱 INDRA SHOLEHUDIN 1* , SONI NOPEMBRI 2 , YUDANTO 3 , FERRY FENDRIAN 4 , TIAN KURNIAWAN 5 1,2,3 印度尼西亚日惹大学体育教育系 4 体育系教育,Sekolah Tinggi Keguruan Dan Ilmu Pendidikan Pasundan,印度尼西亚 5 体育科学系,Universitas Pendidikan Indonesia,印度尼西亚 在线发布:2025 年 1 月 31 日 接受出版:2025 年 1 月 15 日 DOI:10.7752/jpes.2025.01021 摘要:发展运动技能是运动技能的重要组成部分影响学生身体能力和协调性的教育。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念包括认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,社会对体育学校的体育活动与认知能力较低存在偏见,体育学校通常被称为“无脑学校”。理解教学游戏 (TGFU) 方法强调理解游戏战术和策略,以增强学生的运动技能。尽管有这样的前景,但大多数关于 TGFU 的研究主要集中在认知发展上,而培养运动技能可教育性的作用尚未得到充分探索。目的:因此,本研究旨在研究 TGFU 方法对小学生运动可教育性的影响。材料和方法:采用准实验设计,分为三组,即对照组(体育活动最少的学生)、常规体育活动组和从事基于 TGFU 的体育活动的实验组。 90 名 9-11 岁的小学生参加了这项研究,每组 30 名学生。使用运动可教育性测试、协调性测试和游戏表现评估工具 (GPAI) 来评估运动技能的发展。结果:研究表明,参加基于 TGFU 的体育项目的学生的运动技能,特别是协调性和精细运动技能有显著提高。与对照组和常规体育活动组相比,实验组取得了更大的进步。结论:这项研究挑战了体育运动与认知或运动技能卓越不相容的偏见。通过展示基于 TGFU 的学习在运动和认知维度上的双重好处,分析概述了 TGFU 是体育课程的宝贵补充,它促进了年轻学习者的全面发展。关键词:TGFU、运动可教育性、体育、决策、小学生 简介 运动技能发展是教育的重要组成部分,尤其是在年轻学习者的成长时期(Rahmanto 等人,2024 年)。尽管运动技能很重要,但传统的教育模式往往会限制通过游戏增强身体认知能力的机会(Revilla 等人,2021 年)。发展运动技能不仅可以增强身体能力,还有助于提高整体幸福感和学业成绩(Aliriad,2023 年)。此外,运动技能与体育学习中的自尊心密切相关(Shakty 等人,2022 年),强调了对学生心理健康的影响。运动协调也通过执行功能的中介作用与学业成绩相关联(Schmidt 等人,2017 年)。这些证据表明,运动技能支持身体和认知发展,从而增强了教育价值。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念涵盖认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,一种普遍的社会偏见将体育学校的体育活动与较低的认知能力联系起来,并经常被称为“无脑学校”(Supandri,2009 年)。这种偏见削弱了将体育教育纳入更广泛课程的重要性,并贬低了从事体育运动的学生的智力潜力。教学游戏理解 (TGFU) 方法是一种教学框架,将重点从传统的和基于技能的体育教育转移到以理解为导向的方法。它比传统方法更有效地促进批判性思维、自主性和身体素养(Doozan & Bae,2016 年)。通过强调游戏战术和策略,TGFU 使学生能够更深入地理解游戏玩法,从而提高运动和认知技能。实施 TGfU 进一步要求教师成为学生思维过程的熟练观察者和促进者(Mitchell & Collier,2009)。尽管这一证据表明,运动技能有助于身体和认知发展,从而增强了教育价值。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念包括认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,一种普遍的社会偏见将体育学校的体育活动与较低的认知能力联系在一起,并经常被称为“没有大脑的学校”(Supandri,2009 年)。这种偏见削弱了将体育教育纳入更广泛课程的重要性,并贬低了从事体育运动的学生的智力潜力。教学游戏理解 (TGFU) 方法是一种教学框架,将重点从传统的和基于技能的体育教育转移到以理解为导向的方法。它比传统方法更有效地促进批判性思维、自主性和身体素养(Doozan & Bae,2016 年)。通过强调游戏战术和策略,TGFU 使学生能够更深入地理解游戏玩法,从而提高运动和认知技能。实施 TGfU 进一步要求教师成为学生思维过程的熟练观察者和促进者(Mitchell & Collier,2009)。尽管这一证据表明,运动技能有助于身体和认知发展,从而增强了教育价值。运动可教育性是指个人通过指导和练习学习和掌握运动技能(身体动作)的能力。这一概念包括认知能力(思考和理解)、感官知觉(如视觉、听觉和本体感觉)和肌肉协调。然而,在印度尼西亚,一种普遍的社会偏见将体育学校的体育活动与较低的认知能力联系在一起,并经常被称为“没有大脑的学校”(Supandri,2009 年)。这种偏见削弱了将体育教育纳入更广泛课程的重要性,并贬低了从事体育运动的学生的智力潜力。教学游戏理解 (TGFU) 方法是一种教学框架,将重点从传统的和基于技能的体育教育转移到以理解为导向的方法。它比传统方法更有效地促进批判性思维、自主性和身体素养(Doozan & Bae,2016 年)。通过强调游戏战术和策略,TGFU 使学生能够更深入地理解游戏玩法,从而提高运动和认知技能。实施 TGfU 进一步要求教师成为学生思维过程的熟练观察者和促进者(Mitchell & Collier,2009)。尽管