有效的灭菌和消毒对于牙科实践中的感染控制至关重要,减少了与医疗保健相关的感染并确保患者的安全。本综述探讨了牙科中使用的各种灭菌和消毒方法的原理,应用和局限性,包括热灭菌(蒸汽和干热),化学灭菌(氧化物氧化物,过氧化氢)和辐射方法(紫外线(UV)(UV)和γ射线)。重点是每种方法针对一系列病原体的有效性,它们对不同牙科仪器的适用性以及技术的进步,例如汽化的过氧化氢系统和抗菌涂层。高压灭菌灭菌仍然是基石,因为它的可靠性,而紫外线和臭氧等方法具有创新的,材料友好的替代品。通过生物学指标验证灭菌功效的重要性并维持适当的储存方案以确保也突出显示无菌性。通过将传统技术与新兴技术整合在一起,牙科实践可以增强感染控制标准,同时适应现代挑战。
2019 年接种过 HPV 疫苗(一种用于预防人乳头瘤病毒或 HPV 感染的疫苗)的高中生比例*,按性别认同和性接触性别划分
摘要在刚果民主共和国正在进行的一种I Monkeypox病毒(MPXV)爆发。在非非洲国家,已经报道了与旅行相关的进化枝I MPXV感染。2024年11月,加利福尼亚州的圣马特奥县卫生卫生确定了一份电子实验室报告,其中一份针对聚合酶链反应结果的结果暗示了最近从东非回来的男性旅行者MPXV感染。与加利福尼亚公共卫生部(CDPH)交往后,县卫生部门的工作人员在同一天在他的家中访问了该患者,并获得了皮肤脓疱标本,以进行加急的MPXV测试。进化枝I MPXV。这是美洲第一个报道的MPXV感染。在83个确定的接触中,有5个接收了jynneos vac Cine作为暴露后预防。所有联系人均已监测21天;未发现次要病例。患有MPOX兼容病变或临床特征的患者应接受MPXV测试,并且医疗保健提供者应立即将可疑的IMPXV感染(例如,MPOX表现和旅行历史)通知公共卫生机构(例如,MPOX表现和旅行历史记录与正在进行的进化枝I MPXV传输)或在接受II MPXV传播的区域)或II MMPXV clade clade clade clade clade dna dna dna dna dna dna dna dna dna dna。无法检测的测试结果触发其他测试,并促进基于传输的预防措施和其他预防性公共卫生干预措施的快速实施。
摘要 - 由SARS-COV-2病毒引起的COVID-19大流行已成为本世纪最重要的全球危机之一,在全球范围内具有严重的健康和社会经济影响。现有的研究强调了合并症在影响Covid-19结果中的关键作用,但有效的预测模型仍然是一个挑战。这项研究研究了机器学习算法根据患者合并症预测Covid-19的结果的潜力。将算法K-Nearest邻居,决策树,逻辑回归和随机森林应用于仅从马其顿北部公共卫生研究所获得的仅包括阳性COVID-19案例的流行病学数据集。此外,两种集合学习技术(XGBoost和Rusboost)用于提高预测准确性。模型在各种算法中达到了90%的高精度。这些发现表明,机器学习模型可以是预测COVID-19结果的有效工具,尤其是在可用的合并症数据时。
1 Applied数学实验室,PAU大学,64012 PAU,法国2数学系,IBN-TOFAIL大学,Kenitra 14000,摩洛哥3计算机科学与工程学院,SS 西里尔大学和摩托车大学,位于斯科普里,北马其顿1000斯科普里4个Icteam&系数学工程,卢旺大学,1348 Louvain-la-neuve,比利时5号,5548年,louvain-la-neuve,5 Gustave Eiffel University,94010法国Cretether 7的应用数学7讲师HDR,UPEM,UPEM,77420 Champs-Sur-Marne,France,Marne,Marne,8 Lama UMR8050,Paris University Paris是Creteil,Creteil,Creteil,94010 Creteil,Creteil,Creteil,法国94010,94010,法国94010,数学和信息部,罗马尼亚布加勒斯特 *通信:avramf3@gmail.com†这些作者对这项工作也同样做出了贡献。1 Applied数学实验室,PAU大学,64012 PAU,法国2数学系,IBN-TOFAIL大学,Kenitra 14000,摩洛哥3计算机科学与工程学院,SS西里尔大学和摩托车大学,位于斯科普里,北马其顿1000斯科普里4个Icteam&系数学工程,卢旺大学,1348 Louvain-la-neuve,比利时5号,5548年,louvain-la-neuve,5 Gustave Eiffel University,94010法国Cretether 7的应用数学7讲师HDR,UPEM,UPEM,77420 Champs-Sur-Marne,France,Marne,Marne,8 Lama UMR8050,Paris University Paris是Creteil,Creteil,Creteil,94010 Creteil,Creteil,Creteil,法国94010,94010,法国94010,数学和信息部,罗马尼亚布加勒斯特 *通信:avramf3@gmail.com†这些作者对这项工作也同样做出了贡献。
目的:尽管皮肤和软组织感染(SSTIS)是常见的,但坦桑尼亚的抗菌耐药性(NAP-AMR)的国家作用计划集中于血流感染和尿路感染。这项研究评估了实验室确认的SSTI的比例,鉴定了所涉及的细菌物种,分析AMR表型,并研究了与多药耐药(MDR)SSTI相关的危险因素。患者和方法:分析横断面研究是在2023年1月至6月之间进行的,涉及614例SSTIS患者。患者的信息,并使用标准微生物程序,WHONET和Stata软件程序收集并分析了PUS拭子或脓液或坏死组织。结果:患者的中位年龄(四分位间范围)为34(14-54)年,男性占54.4%。实验室确认的SSTI为72.5%(445/614),得出586个细菌分离株。最常见的SSTIS类型是手术部位感染(30.0%),慢性伤口(27.9%)和创伤性伤口(19.7%)。最常见的病原体是金黄色葡萄球菌(17.1%),大肠杆菌(17.1%)和K.肺炎(16.0%)。鉴定出的AMR表型是金黄色葡萄球菌抗甲氧西林的29.0%;延长的谱β乳糖酶产生革兰氏阴性细菌,47.3%;和碳苯甲基阴性细菌,12.9%。与门诊患者相比,住院患者的总体SSTIS为40.9%(251/614),在住院患者中显着高于[或(95%CI); p值:1.86(1.33–2.59); p值<0.001]。结论:大约四分之三的患者已实验室确认的SSTI主要由MDR病原体引起。建议对BMC的SSTIS治疗指南进行重新访问,并建议在坦桑尼亚正在进行的AMR监视中纳入SSTIS。
微生物感染通过多种策略介导癌症的起始和进展。这些策略包括刺激宿主炎症反应(感染介导的炎症),氧化性DNA/RNA损伤的上调以及活性氧(ROS)的产生(ROS),抑制宿主修复机制,以及不受控制的宿主细胞繁殖(1,2)。有几种细菌通过感染介导的炎症中介导癌症程序,例如幽门螺杆菌(H. Pylori),幽门螺杆菌,核细菌,核细菌,肠毒素B. fragilis,fragilis,fragilis,梭状芽孢杆菌,梭状芽孢杆菌,梭状芽孢杆菌和梭状芽孢杆菌和Faecalis肠oc骨(1,1,3)。H.幽门螺杆菌是一种革兰氏阴性杆菌,可引起胃癌,结肠癌和肠外癌(1)。幽门螺杆菌的发病机理包括以下途径;通过NF-κB刺激上调炎症信号通路,增加了DNA/RNA氧化损伤并抑制宿主修复途径,从而诱导上皮细胞增殖并抑制肿瘤抑制蛋白p53(1)。在本研究主题中,两项研究讨论了幽门螺杆菌感染的发病机理。Elbehiry等。 描述了幽门螺杆菌毒力因子在细菌发病机理中的作用,包括外膜蛋白(OMP),酶(例如过氧化酶和尿素酶)和毒素[例如吸泡细胞毒素基因(Vaca)和胞毒素相关基因A(CAGA)]。 Bawali等。 报道了细胞外囊泡连接在驱动炎症和胃肠道癌中的作用。 作者得出的结论是,EV研究和生物工程和OMV-OMV融合的进步Elbehiry等。描述了幽门螺杆菌毒力因子在细菌发病机理中的作用,包括外膜蛋白(OMP),酶(例如过氧化酶和尿素酶)和毒素[例如吸泡细胞毒素基因(Vaca)和胞毒素相关基因A(CAGA)]。Bawali等。报道了细胞外囊泡连接在驱动炎症和胃肠道癌中的作用。作者得出的结论是,EV研究和生物工程和OMV-OMV融合的进步幽门螺杆菌和宿主细胞衍生的细胞外囊泡(EV)的外膜(OMV)介导了幽门螺杆菌的致癌细胞毒素的转运,幽门螺杆菌,细胞毒素相关基因A(CAGA)。CAGA通过刺激IL-8和核因子-κB(NF-κB)降低宿主免疫反应,诱导胃粘膜炎症,并上调活性氧(ROS)。evs包含CAGA,到达全身循环,并将致癌因子传递到人体的远端部分。幽门螺杆菌的OMV通过影响肝细胞中的外泌体并刺激肝卫星细胞来诱导诸如肝纤维状疾病,例如肝纤维化。此外,幽门螺杆菌OMV与其他微生物OMV的融合(pH依赖性)可能是额外胃癌的致癌因子。
摘要:益生菌能够调节一般的抗病毒反应,包括屏障功能以及先天和适应性免疫反应。由 SARS-CoV-2 感染引起的 COVID-19 大流行需要通过多种方法控制和治疗这种病毒感染及其随后的免疫病理学;其中一种方法可能涉及益生菌的施用。与大多数病毒感染一样,其病理反应并非完全由病毒驱动,而是由宿主对病毒感染的免疫反应显著促成的。在 COVID-19 治疗中采用益生菌的潜在可能性必须认识到诱导抗病毒免疫力与过度刺激免疫炎症反应(导致宿主源性免疫病理组织损伤)之间的微妙界限。此外,在开发针对这种病毒的强大反应时,还必须考虑 SARS-CoV-2 逃避策略对免疫系统的影响。本综述将介绍 COVID-19 的免疫病理学和益生菌菌株的免疫调节作用,并通过它们对一系列呼吸道病原体(IAV、SARS-CoV、RSV)以及 SARS-CoV-2 的影响,最终重点关注这些细菌如何通过屏障功能以及先天性和适应性免疫来潜在地操纵传染性和免疫反应。总之,通过益生菌诱导和增强抗病毒免疫不仅可以作为可摄入的佐剂,在屏障完整性和先天性和适应性免疫水平上增强对 SARS-CoV-2 感染的免疫反应,还可以预防感染并增强当前疫苗方案提供的保护。