根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
b'插入\ xc3 \ xbchrung在软件开发软件中的编程中
了解过度参数化模型的成功似乎具有挑战性。部分,由于该过程的违反直觉。共同的智慧表明,在学习中,必须对问题的问题有一定的良好偏见,并且在学习时,我们需要将自己限制在不能过分贴上数据的模型类别中。这种直觉是通过经典学习模型(例如PAC LearningValiant [1984]以及回归Alon等人的理由证明的。[1997]。在这些古典模型中,甚至可以证明Vapnik和Chervonenkis [2015],Blumer等。[1989],学习需要比学习类别的能力更多的示例,并且避免插值对于概括是必要的。这些结果是在与分布无关的设置中获得的,其中人们假定数据上的最差分布。
近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
空军参谋长的阅读清单中包含了几本关于数字技术对社会制度和政治影响的书籍,理由很充分——这种现象不应该只限于专家——它应该引起我们所有具有“笨拙的数字足迹”的公民的关注(第 64 页)。马丁·摩尔的《被黑客入侵的民主》与《为战争而生》(P. W. 辛格和埃默森·T·布鲁金著)和《沙虫》(安迪·格林伯格著)等书籍一起成为这一重要著作,并且像这些书籍一样,面向广泛的读者。作为媒体、通信和权力研究中心主任和媒体标准信托基金的创始董事,摩尔非常熟悉该主题领域;他为民主的“脆弱状态”提出了令人信服的论据(第 253 页),并在他非常易读(但令人不安)的书中警告我们这可能导致什么。
已有20多年了,我有幸与国家统计机构,数据档案,国际组织,研究中心,用户和其他团体合作。我的最初背景和热情是信息技术,但随着时间的流逝,我成为数据管理方面的专家,尤其是数据生产,出版,共享,质量,隐私,更重要的是元数据。最重要的是,我了解了对我们地球,社会和个人更大利益的数据的重要性和需求,作为推动研究和创新的基本工具,支持基于证据的决策,评估对地面上的政策和行动的影响,并衡量我们国家的健康。以下关于我认为的三个相互交织的主题的简短思考和建议,这些主题是数据研究基础架构和实践的现代化和未来的基础。技术在过去30年中发展的快速步伐对数据界产生了巨大影响。许多组织和统计系统都在努力调整和保持步伐,尤其是在公共部门,从本质上讲,该公共部门无法适应变化。在未来十年中,这可能会变得更容易,因为我们将管理指挥棒传递给了下一代数据科学家和信息技术人员,他们天生对我们的新环境具有自然的亲和力,并且受到对未知数的恐惧的限制。我们目前的角色和责任是支持和促进这种过渡。
热带太平洋地区在驱动美国的区域气候和天气事件以及全球全球事件中发挥了重要作用。鉴于该地区的重要性,NOAA与合作伙伴保持了热带太平洋观测系统(TPOS)4,以观察和监测水分和热量的运输,以及跨海,大气和半球的尺度相互作用。社会经历了这些热带太平洋过程的影响,例如下游洪水,干旱,野火,热浪,龙卷风,热带气旋等。这些观察和监测活动(TPO)进食了NOAA的模型套件,这些模型为二次到际时期的年间提供预测,以通过紧急准备和适应性计划来减轻这些极端的损害。
使用深层神经网络越来越多地研究了大脑连接与非成像表型之间的关系。但是,在卷积网络设计中通常会忽略大脑白奇网络的局部和全球性能。我们介绍了Tractgraphformer,这是一种混合图CNN-Transformer的深度学习框架,该框架是针对扩散MRI拖拉术的。该模型利用白质结构的局部解剖特征和全局特征依赖性。图形CNN模块捕获了白质的几何形状和灰质连接到从解剖上相似的白色物质连接中汇总局部特征,而变压器模块则使用自我注意来增强全球信息学习。此外,TractGraphFormer还包括一个用于解释预测白质连接的注意模块。在性别预测测试中,TractGraphFormer在大的儿童数据集(n = 9345)和年轻人(n = 1065)中表现出强烈的表现。总的来说,我们的方法表明,WM中的广泛连接可以预测一个个体的性别,并且在两个数据集中确定了一致的预测解剖区。提出的方法突出了整合局部解剖信息和全球特征依赖性的潜力,以通过扩散MRI拖拉术在机器学习中提高预测性能。
