基于 LSTM 和 TRISHNA 太空任务中使用的设计,多光谱线性阵列为整个光谱范围(短波 (SWIR) 到甚长波 (VLWIR))的红外图像开辟了新的太空商业机会 Lynred 将于 6 月 8 日至 10 日在法国巴黎附近的 Optro 2022 上讨论用于太空应用的多线性和多光谱红外传感器的新发展 法国格勒诺布尔,2022 年 6 月 7 日——Lynred 是一家为航空航天、国防和商业市场提供高质量红外 (IR) 探测器的全球领先供应商,今天宣布推出两款多光谱线性阵列红外探测器,用于一系列地球观测任务。Pega 和 Capyork 旨在集成到成像卫星、用于水循环观察和干旱评估的跟踪和测量仪器以及海陆表面温度监测以及许多其他潜在的商业空间应用中。多光谱红外探测器使用户能够在覆盖从短波到甚长波的红外范围的多个光谱波长带中获得光测量值。它们在卫星上工作,收集沿卫星轨道从同一场景同时拍摄的一系列红外图像数据,检索特定于地球观测应用的科学信息。作为基于 Lynred 为两项太空任务开发的红外探测器的衍生产品:由法国国家空间研究中心 CNES 领导的 TRISHNA(用于高分辨率自然资源评估的热红外成像卫星)和欧洲哥白尼陆地表面温度监测任务 LSTM,Pega 和 Capyork 将使未来的地球观测任务仪器能够:
多对象光谱(MOS)是宇宙起源(COR)计划的技术发展优先级。在基于地面的MOS应用(例如,机器人配置的纤维和打孔板)中流行的孔径控制方法是刚性的,对于太空飞行而言是不实用的。微糖阵列(MSA)技术解决了此问题。MSA充当适应性的缝隙面膜。可以对数组进行编程,以提供与天空中稀疏分布的源相对应的任何缝隙。也可以对其进行编程以在扩展源上提供形状的缝隙。这种NGMSA SAT的开发重点介绍了当前宇宙起源计划优先事项的技术进步以及IR/光学/UV(IROUV)战略任务,该战略使命是十分纪念日调查:2020年代(PDAA)的天文学和天文学发现途径和天文学发现的途径。该项目的主要目的是从技术准备水平(TRL)3至5中以较大的格式(736×384,282.6k总像素)提高静电致动MSA,以支持PDAA-RECECMONTED IROUV战略任务。
近红外(NIR)光检测是对应用程序,例如监视系统,面部识别,工业排序和检查,脉搏氧化,光学相干性层析成像和成像等应用中对技术解决方案不断增长的需求的关键。[1-10]无机半导体(例如GE,INGAAS,PBS和HGCDTE)允许宽带光检测从0.8至10 µm,在10 10 Jones附近或更高范围内具有特定的检测(D *)。[11]同时,其中一些传统材料含有有毒的重金属,总体生产成本相当高。此外,商业NIR成像传感器的分辨率有限,这与光活性层通过电线键入电气连接安装到硅读出的集成电路(ROIC)的事实有关。[12]这将最小的像素螺距限制在大约10 µm上,因为需要ROIC和活动层之间非常精确的对齐。为了允许像素大小的缩放,一项持续的努力集中在ROIC上直接生长光活性层。然而,由于活性层与ROIC或电气互连之间的热膨胀系数的差异,经常观察到温度波动时的设备分解。[13]调用半导体的另一个限制是它们的宽带吸收。这只能通过增加设备复合度来实现波长的选择性,例如通过其他光学滤镜和二分色棱镜,并对空间分辨率提出了额外的限制。[14]
基于具有可见的红外光子对源的非线性干涉仪,利用成对生成过程的量子干扰,红外量子光谱仪,可以通过可见的光子检测来提取样品的红外光学特性,而无需用于基础光学源或检测器。我们为量子傅立叶转换红外(QFTIR)光谱制定了理论框架。所提出的傅立叶分析方法完全利用了干涉图中的相位信息,使我们能够在简单设置中确定复杂的透射率和光学常数,而无需用于光谱选择的任何色散光学器件。在实验演示中,使用低增益状态下操作的QFTIR在近红外区域测量了带通滤波器和硅胶折射率的透射光谱;这些结果与使用常规光谱仪和从参考文献估算的值非常吻合。这些示范证明了QFTIR光谱的有效性和巨大潜力。
摘要:将新材料作为硅在光子设备中的应用一直是科学界的关注中心。二维(2D)材料表现出很大的能力,可以替代这种障碍。石墨烯由于其独特的特性(例如高迁移率和光学透明度),除了灵活性,稳健性和环境稳定性外,还具有光子学和光电子学发光的2D材料之一。据报道,有几种基于石墨烯的光电探测器,具有与各种能量热电,电磁和压电设备集成的能力。但是,由于其带隙限制,原始石墨烯不适合在红外区域检测合理信号。在这项工作中,使用石墨烯/金属插入的石墨烯光电探测器证明了基于石墨烯的近红外检测。使用化学蒸气沉积(CVD)在Cu底物上生长插烯石墨烯,并将层湿转移到Si/SiO2底物上。已将锥形铝微电极用于电触点,以改善照明过程中光生载体的检测。证明了红外检测,在室温下测试了反应性和量子效率,并解释了光生的机理。
摘要:无人机 (UAV) 机组人员的组成有时会定义与地面控制站 (GCS) 相关任务的特定角色。传感器操作员任务特定于他们所操作的平台和 GCS 的类型,但在许多情况下,该操作员的角色对于确定任务成功至关重要。为了评估任务有效性,我们应用了以神经脑成像技术和其他生理生物标志物为重点的人类绩效衡量标准,并结合从传感器操作员任务中获得的行为数据。在实验执行过程中,这包括路线扫描、目标检测和正面识别以及已识别目标的跟踪等任务。在本文的范围内,我们报告了路线扫描任务的初步结果。在这项研究中,在三次试验期间,通过功能性近红外光谱 (fNIRS) 从前额皮质区域获取大脑活动测量值。随着试验的进行,根据特定生物标志物(即氧合血红蛋白)确定,路线扫描任务中表现不佳和表现出色的人之间存在显著差异。这些发现支持了先前的研究,并表明应用神经生理学测量方法对进一步客观了解人类认知表现大有裨益。本文还讨论了在此背景下使用 fNIRS 的好处,即在为无人机操作员提供个性化培训的同时,为动态评估人类表现提供关键优势。
该算法正在 MODIS 海洋团队计算设施 ( MOTCF ) 上开发,用于 EOS 数据和信息系统 ( EOSdis ) 核心处理系统和迈阿密大学罗森斯蒂尔海洋与大气科学学院的科学计算设施。Sea_sfc 温度测定基于卫星红外海洋温度检索,使用多个 MODIS 中红外和远红外波段的组合对大气吸收进行校正。云筛选基于两种方法:使用云筛选产品 (3660) 和在 SST 检索期间得出的云指标。后一种方法包括通过一系列负阈值、空间同质性和增量气候学测试的单独检索。质量评估 SST 输出产品是由估计的 SST 值、输入校准辐射度和每个波段的导出亮度温度、量化云筛选结果的标志、扫描坐标信息、纬度、经度和时间组成的矢量。
能够同时在两个波段成像的双波段红外 (IR) 焦平面阵列 (FPA) 探测器在过去十年中已经发展成熟 [1]–[5]。由于物体和背景的热特征与波长有关,因此理论上该技术可用于提高各种重要应用中的目标检测、跟踪和杂波抑制性能 [6]–[8]。例如,在短波红外 (SWIR) 和中波红外 (MWIR) 波段以及 MWIR 和长波红外 (LWIR) 波段工作的双波段传感器已用于地对空导弹导引头以抵抗干扰弹等干扰 [9], [10]。MWIR/LWIR 传感器目前用于舰载红外搜索和跟踪 (IRST) [11], [12],MWIR/MWIR 传感器已用于防止飞机导弹预警接收器的误报 [13]–[15]。在一些国家,陆军、海军和空军在 8-12 µm LWIR 波段和 3-5 µm MWIR 波段的双波段传感器的开发方面投入了大量资金。这些波段具有几个重要差异。排气口和发动机羽流等热物体在 MWIR 中更为明显 [7]、[10]、[16],而机身、机身和导弹硬体在 LWIR 中更为明显 [7]、[10]。水蒸气吸收在 LWIR 中占主导地位,而二氧化碳吸收在
摘要:本研究提出了一种创新方法,该方法基于低成本红外热成像 (IRT) 仪器的使用,以实时评估脊柱侧弯支具的有效性。确定脊柱侧弯支具的有效性意味着决定支具对患者背部施加的压力是否足以达到预期的治疗目的。传统上,支具有效性的评估依赖于骨科医生在常规随访检查中进行的经验性定性评估。因此,它在很大程度上取决于相关骨科医生的专业知识。在现有技术中,用于确认骨科医生意见的唯一客观方法是基于对脊柱侧弯随时间进展情况的评估,这通常会使人们暴露在电离辐射下。为了解决这些局限性,本研究提出的方法旨在以无害的方式实时、客观地评估脊柱侧弯支具的有效性。这是通过利用热弹效应并将患者背部的温度变化与支架施加的机械压力相关联来实现的。基于此方法的系统已实施,并通过在一家经认可的骨科中心对 21 名患者进行的实验研究进行了验证。实验结果表明,在区分充足和不足压力方面,分类准确率略低于 70%,鉴于此类系统在骨科中心的临床应用,这是一个令人鼓舞的结果,有望进一步推进。
摘要。给出了对俄罗斯乳酸启动器市场的当前状态的评估,这反映了对原材料的依赖,主要来自欧洲制造商。为了减少依赖性并确保在制裁期间确保粮食安全,俄罗斯联邦的科学和技术界已经设定了一项任务,以创建允许获得基于它们的高质量乳酸启动培养物和发酵产品的技术。本文讨论了乳酸开胃培养物的干燥,以增加存储条款和条件。脱水过程中的一个重要点是在开胃剂干残基中保存生物活性物质(乳酸生物,双歧杆菌)。考虑了起动培养物干燥的基本技术,提出了使用膜电加热器的替代技术。在制造的实验室支架上获得了乳酸启动培养物的实验动力学依赖性和干燥过程的方程。干燥的起动器培养物的实验室测试表明,生物活性物质的含量与起始材料,GOST RF和高度可恢复能力完全符合,这表明开发IR辐射技术的可行性并将其引入乳酸和乳酸原料的处理中。