内在途径哺乳动物的内在途径,也称为线粒体介导的凋亡途径,在细胞外和细胞内应激(例如辐照,细胞毒性药物和氧化应激)上被激活。响应于该信号,Bcl-2家族蛋白Bax和Bak的p53依赖性激活被插入线粒体膜中,从而使细胞色素C从线粒体中释放出来。同时抑制了抗凋亡Bcl-2家族蛋白Bcl-2和Bcl-XL。细胞色素C的释放是形成一个称为凋亡组的结构的关键事件,该结构包括APAF-1(70R-49373和70R-15757),Procaspase-9和细胞色素c。细胞色素C促进APAF-1蛋白的七聚体,从而与procaspase-9结合以形成凋亡小体。仅激活procaspase-9才能下游caspase起作用,例如caspase 3。出于这个原因,procaspase-9称为引发剂caspase,而下游则称为效应子caspase。这些效应子胱天蛋白酶进行了细胞的降解。在哺乳动物中,凋亡蛋白抑制剂(IAP)可以抑制内在途径中的胱天蛋白酶的激活,这是当表达SMAC/Diablo等IAP拮抗剂时产生的。Bcl-2和IAP都调节哺乳动物的内在途径。
摘要:传统上,Caspase-9 被认为是内在凋亡途径的启动蛋白酶。然而,在过去十年中,除了启动/执行细胞死亡之外,还描述了其他功能,包括细胞类型依赖性的增殖、分化/成熟、线粒体和内体/溶酶体稳态调节。由于先前的研究揭示了 caspase 在成骨和骨稳态中的非凋亡功能,因此进行了这项研究以识别小鼠 MC3T3-E1 成骨细胞中 caspase-9 敲除导致失调的蛋白质和途径。使用数据独立采集 - 并行累积连续碎片 (diaPASEF) 蛋白质组学来比较对照和 caspase-9 敲除细胞的蛋白质谱。总共量化了 7669 个蛋白质组,其中 283 个上调/141 个下调蛋白质组与 caspase-9 敲除表型相关。失调的蛋白质主要富集在与细胞迁移和运动以及 DNA 复制/修复相关的蛋白质中。在 MC3T3-E1 细胞中,通过基因和药理学抑制 caspase-9 证实了迁移的改变。ABHD2 是一种已确定的细胞迁移调节剂,被确定为 caspase-9 的可能底物。我们得出结论,caspase-9 可作为成骨细胞 MC3T3-E1 细胞迁移的调节剂,因此可能参与骨重塑和骨折修复。关键词:ABHD2、Caspase 9、diaPASEF、迁移、成骨细胞、蛋白质组学 ■ 简介
基于区域的管理工具(ABMT),包括海洋保护区(MPA)通常是静态的,无法反映海洋生态系统的动态现实。海洋生态系统的特征是它们的体现不断变化,这进一步由人为应激源(尤其是气候变化)扩大。ABMT和MPA的前提是以环境平衡的隐式假设,因为它们的边界和管理框架通常被固定,并且很难进行调整。本文试图在静态保护策略与海洋生态系统的深刻和天生的动态性质之间揭开张力。它进一步旨在推进动态ABMT的概念,提出了对ABMT治理的综合概念化,这种概念更容易应对复杂海洋生态系统提出的复杂海洋生态系统动态的挑战类型。的动态被广泛地解释为包含三个维度:空间,具有流动和可调的保护措施;规范性,表示一种动荡和自适应的管理框架,该框架利用生态和管理阈值作为适应性,及时和前瞻性方法来增强管理结果的发起人;和制度,即,充分灵活而动态的机构机制负责监督ABMT实施。在对动态ABMT的全面概念化之后,本文解决了以下问题,管理着海洋的法律框架是否可以维持这种动态的海洋治理模式。
摘要 过苯甲酸叔丁酯(TBPB)是一种常见的聚合反应引发剂,但其分子结构中的过氧键极易断裂,导致分解甚至爆炸。为探究TBPB的热行为,抑制反应过程中产生的自由基的热危害,采用成熟的量热技术对TBPB的热稳定性进行了测定。采用Kissinger-Akahira-Sunose (KAS)、Flynn-Wall-Ozawa (FWO)和Starink动力学方法计算了TBPB分解反应的表观活化能。通过傅里叶变换红外光谱(FTIR)实验测定了TBPB热分解产物,利用电子顺磁共振波谱(EPR)结合自由基捕获技术对反应过程中产生的自由基进行了定性分析。本研究选取自由基捕获剂及抑制剂2,2,6,6-四甲基哌啶氧基(TEMPO)作为TBPB热分解反应热失控抑制剂,验证了其对相应自由基及TBPB分解反应热失控的抑制效果。研究发现TEMPO可有效降低TBPB潜在的热危险性和事故风险,为TBPB生产、储运过程中热灾害的预防与治理提供有力参考。
一分 1. 什么是顺反子? 2. 什么是重组? 3. 什么是突变体? 4. 说出 RNA 聚合酶的类型。 5. 说出 RNA 聚合酶的任意两种功能。 6. 什么是转录? 7. 什么是遗传密码? 8. 什么是翻译? 9. 什么是三联体密码子? 10. 什么是起始密码子?举例说明。 11. 什么是终止密码子?举例说明。 12. 什么是摆动假说? 13. 说出翻译所涉及的步骤。 14. 什么是异染色质? 15. 什么是真染色质? 16. 什么是基因表达? 17. 定义封端? 18. 什么是剪接? 19. 定义多聚腺苷酸化。 20. 什么是基因沉默? 21. 什么是 RNAi? 22. 影响基因表达的因素有哪些? (光照、温度、污染) 23. 两种调控基因是什么? 24. 如果基因表达不受调控会发生什么? 25. 什么会刺激基因表达? 26. 什么会增加基因表达? 27. 基因表达的两种主要部分是什么? 28. 基因表达的三个要素是什么? 29. 基因表达的两个阶段是什么? 30. 什么是摆动现象? 31. 什么是糖基化? 32. 什么是甲基化? 33. 什么是磷酸化? 34. 乙酰化是什么意思?
细胞间粘附分子-1 (ICAM-1) 被认为是神经炎症反应的启动子,可导致神经退行性以及认知和感觉运动障碍,出现在包括创伤性脑损伤 (TBI) 在内的几种病理生理条件下。然而,ICAM-1 介导的白细胞粘附和迁移的潜在机制及其与 TBI 后神经炎症和功能障碍的联系仍然不清楚。在这里,我们假设阻断 ICAM-1 会减弱白细胞向大脑的迁移并促进 TBI 后的功能恢复。实验性 TBI 是在雄性和雌性野生型和 ICAM-1 − / − 小鼠中通过液体冲击伤 (25 psi) 体内诱发的,并在人脑微血管内皮细胞 (hBMVEC) 中通过拉伸伤 (3 psi) 体外诱发的。我们用 ICAM-1 CRISPR/Cas9 处理 hBMVEC 和动物,并进行了几项生化分析,并证明 CRISPR/Cas9 介导的 ICAM-1 缺失可通过减弱 paxillin/黏着斑激酶 (FAK) 依赖性 Rho GTPase 通路来减轻血脑屏障 (BBB) 损伤和白细胞向脑迁移。为了分析功能结果,我们使用了一组行为测试,其中包括 TBI 后的感觉运动功能、心理压力分析以及空间记忆和学习。总之,这项研究可以确定 ICAM-1 的缺失或阻断在转变为针对 TBI 病理生理学的新型预防方法方面的重要性。
由于离子电导率低,界面稳定性差和伴随的侧面反应,用于固态金属电池的固体电解质的开发是具有挑战性的,并且有限。本文是一种基于杂交异质3D交联网络的新型硫氯二氧化官能化的固体电解质,设计和合成了二十个二葡萄酸。硫代酸使软PEGDA聚合在硬P(VDF-HFP)矩阵中形成坚硬的混合异质的3D 3D交联网络,而无需引发剂,从而同时将离子运输并调节锂金属表面上的锂沉积。此外,通过聚合形成的C-S键可以提高LI +的迁移速率,而该无引发剂的聚合过程消除了残留的自由基侧反应和副产品,从而有效地提高了固体电解质与锂阳极的兼容性。由于合理设计,在环境温度下,硫酸官能化的杂交网络电解质电解质在环境温度下表现出高离子电导率为0.11 ms cm-1。对称的LI // LI细胞可在1800 h循环中实现Lifepo 4 // Liepo 4 //全稳态电池在25°C时在0.5 c时在300 c上提供高容量保留率(> 80%)。这项工作表明了Thicotic酸官能化的杂种网络的合理设计,其离子电导率和稳定性大大提高了高性能固态电池。
细菌抗生素持久性是一种现象,即细菌暴露于抗生素后,大多数细菌死亡,而一小部分细菌进入低代谢持久状态并能够存活。一旦去除抗生素,持久性细菌群落可以复苏并继续生长。这种现象与几种不同的分子机制和途径有关。细菌抗生素持久性的一个常见机制可能是蛋白质合成的扰动。为了研究这种机制,我们鉴定了四种不同的 metG 突变体,以确定它们是否能够提高抗生素持久性。两种 metG 突变体编码 MetRS 催化位点附近的变化,另外两种突变体编码反密码子结合域附近的变化。metG 中的突变尤其令人感兴趣,因为 MetRS 负责启动 tRNA Met 和延长 tRNA Met 的氨酰化,这表明这些突变体可能影响翻译起始和/或翻译延长。我们观察到所有 metG 突变体都提高了抗生素持久性水平,而野生型 metG 的转录水平也降低了。虽然 MetRS 变体本身不会对 MetRS 活性产生影响,但它们确实降低了翻译率。我们还观察到 MetRS 变体影响同型半胱氨酸的校对机制,并且这些突变体的生长对同型半胱氨酸高度敏感。结合以前的研究结果,我们的数据表明,细胞 Met-tRNA Met 的减少
高级糖基化终产物(年龄)积聚在大脑中,导致神经退行性疾病,例如阿尔茨海默氏病(AD)。AD的病理生理受到年龄的受体的影响和Toll-Hody Foceor 4(TLR4)。蛋白质糖基化通过一系列复杂的反应导致不可逆转的年龄,涉及Schiff碱的形成,Amadori反应,其次是Maillard反应,后者会导致脑葡萄糖代谢异常,氧化应激,氧化功能不良,氧化功能不良,线粒体不良,斑块沉积和神经元死亡。淀粉样斑块和其他刺激激活巨噬细胞,这些巨噬细胞是AD发育中至关重要的免疫细胞,触发炎症分子的产生,并促进该疾病的发病机理。AD的风险因动脉粥样硬化,痴呆,高龄和2型糖尿病性麦芽菌(DM)的风险因素增加了一倍。随着个体的年龄,由于糖氧化酶水平降低和年龄累积的增加,神经系统疾病(例如AD)的流行率增加。胰岛素在蛋白质的作用上影响了AD样TAU磷酸化和淀粉样β肽清除的标志,从而影响脂质代谢,炎症,血管反应性和血管功能。高运动组框1(HMGB1)蛋白是神经炎症反应的关键引发剂和激活因子,与神经退行性疾病(如AD)的发展有关。发现TLR4抑制剂可改善记忆力和学习障碍并减少β积累。饮食和生活方式的改变也会减慢广告的进展。需要针对年龄相关途径的新的治疗方法。对抗糖化剂,晚期糖基化终产物(RAGE)抑制剂的受体和破损的治疗研究为干预策略提供了希望。
放松复制起源和DNA解旋酶的负载是染色体复制的启动。在大肠杆菌中,最小起源oric包含一个双链放松元素(欠款)区域和结合起始蛋白DNAA的三个(左,中和右)区域。左/右区域带有一组DNAA结合序列,构成了左/右DNAA子复合物,而中间区域具有一个单个DNAA结合位点,该位点刺激了左/右DNAA亚复合物的锻炼。此外,群集元素(tattaaaaagaa)位于最小oric区域外。左DNAA子复合物促进了由于暴露TT [A/G] T(T)序列的放松,然后结合到左DNAA亚复合物,稳定DNAB Helicase载荷所需的未能状态。然而,右DNAA亚复合物的作用在很大程度上不清楚。在这里,我们表明,左/右DNAA子复合物的应有的放松,而不是仅由左DNAA子复合物,这是由应有的末端次区域刺激的。一致地,我们发现了右DNAA子复合物 - 绑定的单链应育成区域和群集区域。此外,左/右DNAA子复合物独立地结合了DNAB解旋酶。仅对于左DNAA子复合物,我们表明该群集对于DNAB加载至关重要。体内数据进一步支持了右DNAA子复合物的Unwound DNA结合的作用。综上所述,我们提出了一个模型,其中右DNAA子复杂与UNWOUND应变动态相互作用,有助于适当的放松和有效的DNAB解旋酶负载,而在没有Right-DNAA子复杂性的情况下,在这些过程中没有在这些过程中进行群集的辅助,以支持重复的鲁棒性。
