这项研究利用密度功能理论(DFT)来探索BN掺杂的准四膜堆积(QTP)C 60 C6 60聚合物纳米片的结构稳定性,电子特性,吸附行为,光学特征和氢进化反应(HER)活性。吸附研究表明,与BN掺杂相比,与CO 2和N 2相比,H 2 O分子的亲和力明显更高,强调了湿度在调节气体感应响应中的关键作用。这与对新型非金属2D接口对水相互作用的有限原子规模的了解有限。Bader电荷传输分析和吸附能量计算进一步验证了H 2 O(+0.056 E)的增强吸附,从而诱导了0.5至1.2 eV的显着带隙修改。光学研究表明,可见光谱中的光吸收得到了改善,这表明了材料的光电和光催化应用的潜力。她的活性评估表明,BN掺杂降低了氢进化的过电势,从而提高了催化效率。总体而言,BN掺杂的QTP C 60纳米片具有较高的气体选择性,提高光学特性和改善的催化性能,使它们成为温室气体捕获,湿度感应和可持续能源应用的有希望的候选者。
背景:第三级RNA结构的预测对医学领域(例如Messenger RNA [mRNA]疫苗,基因组编辑)和病毒转录物的探索很重要。尽管存在许多RNA折叠软件程序,但很少有研究仅将其关注的源头简化为病毒式Pseudoknotted RNA。这些调控假诺在基因组复制,基因表达和蛋白质合成中起作用。目的:本研究的目的是探索5个RNA折叠引擎,该发动机用于计算最低自由能(MFE)或最大期望准确性(MEA),当应用于先前使用诱变,序列比较,结构探测,结构探测,或核磁共振(NMR)的特定病毒式Pseudoknotted RNA。方法:对本研究中使用的折叠发动机进行了26次实验得出的短伪序列(20-150 nt),使用在测试软件预测准确性时很常见的指标:百分比误差,平均平方误差(MSE),敏感性,敏感性,敏感性,积极的预测值(PPV),Youden的INDEX(Youden's Intex(j)和f 1-score。本研究中使用的数据集来自包含398个RNA的pseudobase ++数据库,该数据库使用PRISMA(系统审查和荟萃分析的首选报告项目)的一组包含和排除标准进行了评估。在Mathews的参数之后,给定RNA序列内的基本配对被认为是正确或不正确的。结果:本文与以前的软件的迭代相比,与较旧的折叠引擎相比,RNA预测引擎具有更高的精度,例如PKISS。本文还报道说,当使用诸如F 1 -SCORE和PPV等指标评估时,MEA折叠软件并不总是以预测准确性的MFE折叠软件,而当应用于病毒式PseudokNotted RNA时。此外,结果表明,如果不应用辅助参数,例如Mg 2+结合,悬挂式最终选项和发夹型惩罚,则热力学模型参数将无法确保准确性。结论:这是将一套RNA折叠发动机套件应用于仅包含病毒式伪KNOTED RNA的数据集的首次尝试。本文报道的观察结果突出了不同的从头算预测方法之间的质量,同时实施了这样一种想法,即对更有效的RNA筛选更有效地了解细胞内热力学是必要的。
Madhunisha Arivazhagan 1,2,Ashmith Senthilkumar 1,2,Keng Yya Yeo 1,Tanisha Saisudhanbabu 12,Minh anh anh le 1,2,Travina BS Wong 1,2
我们提出了一种新的形式主义和有效的计算框架,以研究第一原理的绝缘体和半导体中的自我捕获的激子(Stes)。使用多体伯特盐方程与扰动理论结合使用,我们能够在扰动方案中获得模式和动量分辨的激子耦合矩阵元素,并明确求解电子(孔)的真实空间定位,以及晶状体变形。此外,这种方法使我们能够计算Ste势能表面并评估Ste形成能量并变化。我们使用二维磁性半导体铬铬和宽间隙绝缘子Beo证明了我们的方法,后者具有深色激子,并预测其stokes spriances and Cooherent phonon的产生,我们希望我们能引发未来的实验,例如未来的光发光和瞬时吸收研究。
1。Gomila M.等。“基于基因组的基因组分类法和S.频率的建议nov。和S. de-Gradans sp。nov。并修改了S. perfectoma和氯替氏菌的描述”。微生物10.7(2022):1363。
随着从化石燃料的能源生产到环境可持续的方法的过渡,已经出现了对安全有效的能源存储的强大需求。一种完善的方法是在充电电池中能量的电化学存储,尤其是基于锂的电池,彻底改变了各种电子设备的储能。[1,2]仅基于锂电池的电池就无法解决当今的储能问题,因为它们面临各种挑战,从有限的电池寿命[4]中的重要电池组件[3]到严重的安全问题。[5]为了抵制与锂电池相关的日益增长的资源短缺,并在可预见的未来提供了能力和环境可持续的能源存储,针对替代电池类型的研究工作大大增加了。[6-13]当前一代锂电池的替代方案包括其他
...................................................................................................................................................... 23
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
生物压电材料因其作为环境友好型能量收集材料的巨大潜力而开始受到关注。特别是,简单的氨基酸和肽晶体组件在施加力的情况下表现出大的电压输出,并且在检测振动时具有高灵敏度。在这里,我们利用密度泛函理论 (DFT) 计算来定量预测两种研究不足的蛋白质氨基酸晶体的能量收集特性:L-精氨酸和 L-缬氨酸。这项工作强调了量子力学计算筛选晶体作为高性能能量收集器的能力,并展示了小生物晶体作为环境友好型压电材料的能力。预计 L-精氨酸的最大压电电压常数为 g ij 274 mV m/N,杨氏模量为 E 17.1 GPa。 L-缬氨酸的最大预测压电电压常数为g ij 62 mV m/N,计算的杨氏模量为E 19.8 GPa。