本综述涵盖了各种印刷油墨树脂的分解机制,在基于聚烯烃(PO)的机械回收过程中特别关注其在挤出条件下的行为。硝酸纤维素(NC)的热降解和水解 - 在单层柔性塑料包装上使用柔性表面印刷的最常用的粘合剂,在160-210°C下的机械回收过程中同时发生。对于其他印刷墨水粘合剂,聚氨酯(PU)明显降解发生在200至300°C之间,大部分高于250°C。然而,随着湿度的参与,水解降解可以从150°C开始。也发现了乙酸纤维素(Ca)衍生物的类似效果,该衍生物是热稳定的,直到300°C,并且可以在100°C下水解。聚乙烯基丁丙(PVB)的热稳定性不受湿度的影响,根据不同类型的不同类型,热稳定性范围为170至260°C。紫外线(UV)固定的丙烯酸酯是热稳定的,直到400°C。水解降解可以在室温下进行。此外,该评论涵盖了用于打印墨水应用的不同着色剂的热稳定性,并在某些常见颜色的几种热替代品上详细说明。这项研究进一步回顾了粘合剂树脂如何影响回收酸盐的质量,这不仅是由于粘合剂树脂的降解而引起的,而且还通过塑料和粘合剂树脂之间的不混溶性引起。在高级回收过程中,主要是选择性的溶解性和热解,粘合剂树脂的存在及其降解产物仍然可能影响产品的质量。这篇评论强调了深入研究的必要性,以揭示印刷油墨成分对再生产品质量的影响。
Brian K. Paul ac 、Kijoon Lee ac 、Yujuan He b 、Milad Ghayoor ac 、Chih-hung Chang b 和 Somayeh Pasebani ac a 俄勒冈州立大学机械、工业与制造工程学院,俄勒冈州科瓦利斯,97330 b 俄勒冈州立大学化学、生物与环境工程学院,俄勒冈州科瓦利斯,97330 c 俄勒冈州立大学先进技术与制造研究所 (ATAMI),俄勒冈州科瓦利斯,97330 提交人 Neil Duffie (1),麦迪逊,美国 本文讨论了一种新型混合方法的基本原理,该方法使用改进的激光粉末床熔合 (LPBF) 机器合成氧化物弥散强化 (ODS) 304L 不锈钢 (SS) 合金。此前,ODS 金属基复合材料是通过球磨由 LPBF 生产出来的,但这种方法的规模化成本很高。在这里,我们通过在激光转化和固结之前将前体化学物质喷射到 SS 基材上,选择性地将氧化钇纳米颗粒掺杂到 SS 基材中。这种新合金表现出良好的室温机械性能。使用电子显微镜、能量色散光谱和电子背散射衍射研究微观结构。关键词:增材制造、金属基复合材料、不锈钢
图 1. 微生物墨水的设计策略、生产和功能应用示意图。a. 大肠杆菌经过基因改造,通过将源自纤维蛋白的 a(旋钮)和 g(孔)蛋白质结构域与卷曲纳米纤维的主要结构成分 CsgA 融合来生产微生物墨水。分泌后,CsgA- a 和 CsgA- g 单体自组装成通过旋钮-孔结合相互作用交联的纳米纤维。b. 旋钮和孔结构域源自纤维蛋白,它们在血凝块形成过程中的超分子聚合中起关键作用。c. 从工程蛋白质纳米纤维生产微生物墨水的方案涉及标准细菌培养、有限的加工步骤以及不添加外源聚合物。微生物墨水经过 3D 打印以获得功能性活材料。
增材制造 (AM) 工艺通过逐层沉积材料来构建机械零件 [1] 。在金属 AM 工艺中,粉末床熔合 (PBF) 的应用最为广泛 [2] 。PBF 方法使用激光或电子束将粉末床顶部的金属粉末层与下面的层熔合在一起。激光 PBF (LPBF) 的一个众所周知的应用是通用电气开发的尖端航空推进发动机内的燃油喷嘴,其中约 20 个零件的传统设计减少为单个 LPBF 构建 [3] 。虽然这些进步意义重大,但目前工业中的 LPBF 构建实践通常仅限于单一合金。相比之下,定向能量沉积工艺已用于制造金属复合材料,可用于生产需要多种材料的高度工程化机械零件 [4] 。 ODS 合金是一种金属基复合材料,其中纳米级氧化物可抑制高温下的晶粒生长,从而提供高温力学性能和高抗蠕变性[5]。ODS 铁素体合金作为耐辐射包层和结构材料的替代品,受到核工业的广泛关注。氧化物的小尺寸和高数密度导致了大量复合界面,这被认为可以消除点缺陷,防止缺陷在失效前聚集[6]。然而,由于颗粒的浮力,ODS 合金的铸造具有挑战性[7]。因此,传统的粉末冶金法用于生产 ODS
摘要 纸基传感器上金属阳离子的电化学检测因其易于制造、一次性使用和成本低廉而被认为是当前光谱和色谱检测技术的一种有吸引力的替代方案。本文设计了一种新型炭黑 (CB)、二甲基乙二肟 (DMG) 墨水作为电极改性剂,与 3 电极喷墨打印纸基体结合使用,用于水样中镍阳离子的吸附溶出伏安电分析。在没有常用的有毒金属薄膜的情况下,所开发的方法提供了一种新颖、低成本、快速且便携的吸附溶出检测方法来进行金属分析。该研究展示了一种在纸基传感器上检测镍的新方法,并通过限制使用有毒金属薄膜,在纸基金属分析领域的先前工作的基础上取得了进展。首次通过增加活性表面积、电子转移动力学和与非导电二甲基乙二肟膜相关的催化效应,提高了器件的灵敏度,并通过电分析进行了确认。首次使用 CB-DMG 墨水可以在电极表面选择性预浓缩分析物,而无需使用有毒的汞或铋金属膜。与类似报道的纸基传感器相比,实现了检测限 (48 µg L -1 )、选择性和金属间干扰的改善。该方法用于检测水样中的镍,远低于世界卫生组织 (WHO) 标准。
• 使用 SLEEK ™ 方法,用工程化的 AsCas12a 编辑 iPSC,敲入 CD16 和 mbIL-15。3 同时,还用 AsCas12a 编辑 iPSC,敲除 CISH 和 TGFβR2。然后将 iPSC 克隆分化为 iNK 细胞。流式细胞术证明 DKI iNK 细胞表面表达 CD16 和 mbIL-15。• 使用 Incucyte ® 成像 NucLight Red 标记的 SK-OV-3 细胞进行 3D 肿瘤球体杀伤试验,以评估 iNK 细胞的细胞毒性。通过在基础培养基中培养野生型 (WT) 和 DKI iNK 细胞 21 天(不含支持细胞因子)来测量体外持久性。 • 非肥胖糖尿病 (NOD) 严重联合免疫缺陷 (scid) γ (NSG) 小鼠接种 0.25x 10 6 荧光素酶 (luc) 表达 SKOV-3 细胞系 (SKOV-3-luc) 卵巢肿瘤细胞。小鼠接受单次腹膜内 (IP) 剂量 500 万 WT iNK 或 EDIT-202 细胞,多次 IP 剂量 2.5 mg/kg 曲妥珠单抗 (TRA)。使用 Perkin Elmer 生物发光体内成像系统 (IVIS) 计算肿瘤负荷。披露
名称:创始人,魔术墨水抽象游戏是一种基本和普遍的人类行为,超越了童年,塑造了一生的认知,情感和社会发展。传统上与娱乐和娱乐有关,但心理学和神经科学的研究表明,游戏在促进创造力,解决问题,适应性和情感健康方面具有更深的功能。这项研究通过跨学科的镜头探索了发挥的多维性质,从发育心理学,认知科学和社会心理学借鉴,以分析其在学习,创新和心理健康中的作用。本文将播放分为各种形式(结构化,非结构化,社交和数字),高音指示每种类型如何促进认知灵活性,韧性和人际交往能力。这些发现强调了游戏的神经系统益处,例如增强的神经塑性和刺激奖励途径,从而增强动力和参与。此外,该研究还研究了比赛在成年中的作用,从而揭示了误解,即玩游戏仅在童年时才相关。它讨论了其在教育,工作环境和治疗中的应用,展示了如何增强创造力,协作和情感调节的娱乐性。通过综合实证研究和理论观点,这项研究认为玩法不是一种微不足道的活动,而是人类成长和适应的关键机制。它要求将游戏纳入日常生活的方式进行范式转变,并提倡将其纳入教育课程,企业文化和心理健康干预措施。这项研究的含义表明,培养嬉戏的心态可以有助于终身学习,创新和整体幸福感。关键字:认知灵活性,解决问题,情感韧性,社交联系,减轻压力,自我表达,创新和创造力,游戏的力量:基于研究的观点,对其益处定义和游戏的范围定义游戏的范围被普遍认可为一种自愿性的,具有固有激励的活动形式,具有典型的与乐趣相关联。传统上,游戏与童年紧密相关,在那里它被视为发展和学习的自然组成部分。在这种情况下,Play是儿童探索世界,建立社会联系,发展认知技能并练习各种行为和角色的机制。早期理论,例如让·皮亚特(Jean Piaget)提出的理论,认为对认知发展至关重要,使孩子们可以通过结构化和非结构化活动来实践逻辑,解决问题和社交互动。
相关性 过去几十年来,医学取得了巨大进步,提高了全球预期寿命和患者的生活质量。尽管如此,慢性病仍然是一个社会经济负担,也是全球主要的死亡原因之一 [1]。再生医学旨在恢复患病组织的功能,是改善慢性病患者病情的有前途的工具。有一项科学研究一直在探索再生医学方法来治疗导致慢性疾病和死亡的主要原因,例如心血管疾病 [2]、糖尿病 [3] 和癌症治疗 [4]。其中一些新的先进治疗方法目前正处于 II 期临床试验阶段,有望改善全球数百万患者的生活方式 [5]。
结果表明,可以针对各种生物构图方法(包括基于挤出的基于挤压和微型技术)进行多个链接方法,尽管需要进一步优化以提高生物学兼容性。基于硫醇-IT的点击化学方法提供了完善水凝胶特性的可能性,从而改善了生物学结果。使得成功组织复杂的结构,例如内皮和上皮管,这强调了各种组织工程应用的潜力。
•IPSC衍生的NK细胞(墨水电池)为患者衍生的NK细胞疗法提供了一种高度吸引人的替代方法,既来自治疗功效和安全性的角度,•无鲁棒的3D差异差异方案,可生产墨水细胞,以产生墨水细胞以及通过冻结/融化的方案以及良好的绘制范围•在范围内发挥良好的范围•验证•均具有良好的绘制•绘制墨水范围•绘制墨水素材•墨水的效果•墨水素描•墨水的效果•相当于血液来源的NK细胞•墨水细胞具有完全发挥作用,具有形成裂解免疫突触的能力,从而有效杀死癌细胞系和CLL患者肿瘤细胞