水凝胶是用于组织工程的理想材料,但迄今为止的努力表明,其在产生促进细胞自组织成分层三维 (3D) 器官模型所必需的微结构特征方面的能力有限。在这里,我们开发了一种含有预制明胶纤维的水凝胶墨水,以打印 3D 器官级支架,重现心脏的细胞内和细胞间组织。在水凝胶中添加预制明胶纤维可以定制墨水流变性,从而实现受控的溶胶-凝胶转变,从而无需额外的支撑材料即可精确打印独立的 3D 结构。墨水挤出过程中剪切诱导的纤维排列提供了微尺度几何线索,可促进培养的人心肌细胞在体外自组织成各向异性的肌肉组织。由此产生的 3D 打印心室体外模型表现出仿生各向异性的电生理和收缩特性。
摘要:本文介绍了一种将超薄硅芯片嵌入机械柔性阻焊层中并通过喷墨打印实现电接触的方法。将感光阻焊层通过保形喷涂涂覆到具有菊花链布局的环氧粘合超薄芯片上。使用紫外线直接曝光的光刻技术打开接触垫。实现了直径为 90 µ m 和边长为 130 µ m 的圆形和矩形开口。喷墨打印含有纳米银和金的商用油墨,以在菊花链结构之间形成导电轨道。应用了不同数量的油墨层。通过针探测来表征轨道电阻。银油墨仅在多层和 90 µ m 开口时才显示低电阻,而金油墨在至少两层印刷层时表现出个位数 Ω 范围内的低电阻。
由液态金属(LM)液滴组成的软,多功能复合材料的材料挤出(MEX)可以为从软机器人到可拉伸电子设备的一系列应用提供高度量身定制的性能。但是,了解LM墨水流变性和打印过程参数如何在MEX处理过程中重新配置LM液滴形状,以实现对属性和功能的原位控制。在此,确定这些复合材料的MEX期间哪个控制LM微结构,确定了哪些控制LM微结构。评估这些参数的相互作用和相互依赖性,并通过系统地调整每个单独的参数,将几乎球形的LM液滴转化为高度伸长的椭圆形形状,平均纵横比为12.4。的材料和过程关系是为LM墨水建立的,该墨水表明,在MEX期间,应实现从球形到椭圆形形状的LM微结构编程的墨水粘度阈值。此外,发现LM液滴上的薄氧化物层在液滴形状的重新配置和保留中起着独特而关键的作用。最后,提出了基于材料和过程参数的两个定量设计图,以指导MEX添加剂制造策略,用于调整LM-Polymer Inks中的液滴体系结构。这项研究所获得的见解实现了材料和制造的知情设计,以控制新兴的多功能软复合材料的微观结构。
诱导性多能干细胞 (iPSC) 已成为细胞疗法的革命性工具,因为它们能够分化成各种细胞类型、供应无限,并且具有作为现成细胞产品的潜力。iPSC 衍生免疫细胞的新进展产生了强大的 iNK 和 iT 细胞,它们在动物模型和临床试验中表现出对癌细胞的强大杀伤力。随着先进的基因组编辑技术的出现,高度工程化的细胞得以开发,我们在此概述了 12 种设计 iPSC 的策略,以克服当前基于细胞的免疫疗法的局限性和挑战,包括安全开关、隐形编辑、避免移植物抗宿主病 (GvHD)、靶向、减少淋巴细胞耗竭、有效分化、提高体内持久性、干细胞、代谢适应性、归巢/运输以及克服抑制性肿瘤微环境和基质细胞屏障。随着先进基因组编辑技术的发展,现在可以将较大的 DNA 序列插入精确的基因组位置,而无需 DNA 双链断裂,从而实现多重敲除和插入。这些技术突破使得以前所未有的速度和效率设计复杂的细胞治疗产品成为可能。iPSC 衍生的 iNK、iT 和先进的基因编辑技术的结合提供了新的机遇,并可能为下一代细胞免疫疗法开启新时代。
– 可在多种材料上印刷,包括新型环保基材 – 简便有效的卷筒纸处理 – 墨辊自动释放,可快速转换 – 生产速度高达 450 米/分钟 – 高效的延长干燥器即使在应用全白墨覆盖、冷封或清漆时也能实现高速印刷 – 从放卷机到复卷机的张力控制非常精确 – 即使是关键/敏感材料也不会起皱 – 速度变化时套准校正更快 – 增强型粘度控制系统带有油墨冷却装置,可实现出色的印刷过程稳定性
ubuque 365 › 墨水船 Ortelius。ty 将带我们上岸参观......他的收藏品是钛合金头骨。▫......Pizza-Rita – 这是标准的披萨汉堡。
ubuque 365 › 墨水船 Ortelius。ty 将带我们上岸参观......他的收藏品是钛合金头骨。▫......Pizza-Rita – 这是标准的披萨汉堡。