用于证明经典网络信息理论中内界的重要技术工具是所谓的典型典型性引理[1,2]。同样重要的是,但通常不强调的是内部绑定证明中使用的隐式联合和交叉参数。对于量子通道,证明可以承受联合和相交参数的联合典型引理是一个很大的瓶颈。由于这种瓶颈,经典网络信息理论中的许多内部界限迄今无法扩展到量子设置。信息理论中最内在的界限首先是在许多独立和相同分布(IID)的传统环境中证明的。最近,注意力已转移到仅一次仅使用一次经典或量子通道的单发环境中证明内在界限。这是最通用的设置。的目的是证明良好的单发内边界,当局限于渐近IID和渐近非IID(信息频谱)设置时,理想地产生了最著名的内部边界。在一次性环境中,联合和交叉参数的重要性增加,通常需要明确。这是因为在渐近IID设置中经常使用的时间共享技术不适用于一次性设置。换句话说,单次设置迫使我们为多发通道寻找所谓的同时解码器。同时解码器的内部结合分析通常使用联合和相互参数。
通过将药物输送到内耳(即耳蜗)来进行治疗。尽管已经提出了药物来防止毛细胞受损或恢复毛细胞功能,但这种治疗的难点在于确保向细胞输送足够的药物。为此,我们提出了一种方法来评估将磁性粒子纳米机器人(称为 MNPS)及其聚集体移动通过耳蜗圆窗膜 (RWM) 所需的磁力。所提出的有限元方法可以作为使用 MNP 设计内耳药物输送系统的附加工具。
准确量化径流源并了解冰川山盆地中的水文过程对于面对气候变化的有效水资源管理至关重要。这项研究旨在通过利用集成的陆地表面,冰川能量平衡和河流路线模型来确定吉尔吉斯斯坦内部蒂恩 - 山山脉中各种径流源的贡献。考虑了对太阳辐射和云传播过程的局部地形影响,降低了网格的气象强迫数据。然后,对观察到的排放,冰川质量平衡和雪水等效的综合模型进行评估,重点是Kara-Batkak冰川参考位点。短波辐射校正对于提高模型模拟的准确性尤为重要。结果表明,峰值冰川熔体的贡献发生在7月和8月,一些盆地达到54%。每年,盆地中冰川的平均贡献为19%,而融雪和降雨的比率分别为58%和23%。这项研究强调了综合建模方法在理解和量化数据筛分高山区域中的径流组件方面的实用性。掺入观察到的冰川数据对于在当前气候条件下准确表示水文过程至关重要。这些发现强调了考虑冰川动态及其对水资源的影响,以告知冰川山区盆地的有效水管理策略。
内大陆架是冲浪区和中大陆架之间的区域,表面和底部边界层 (BBL) 在此汇合甚至重叠 ( Lentz 1994 )。在这里,横岸风有助于跨内大陆架的输送 ( Fewings 等人 2008 ),而中大陆架的输送则由埃克曼动力学引起的沿岸风驱动。内大陆架的另一个先前未研究过的显著特征是,内大陆架是内潮汐几乎失去所有能量的区域。后者是我们在这里的重点,并引出了内大陆架作为内潮汐冲浪区的作用的新区分 ( Becherer 等人 2021 ,以下简称第二部分 )。这种内部冲浪区,其中内部潮汐以受水深限制的饱和状态存在,具有与表面重力波冲浪区类似的特征(Thornton 和 Guza 1983;Battjes 1988)。内部潮汐要么在当地产生(Sharples 等人 2001;Duda 和 Rainville 2008;Kang 和 Fringer 2010),要么在传播路径较长的偏远地区产生(Nash 等人 2012;Kumar 等人 2019),将大量能量传输到内架(Moum 等人 2007b;Kang 和 Fringer 2012)。在这里,能量被湍流耗散,产生斜压混合,从而导致水体转化。在内架上,内部潮汐在驱动
表面脑电图是测量电脑活动的标准且无创的方法。人工智能的最新进展导致自动检测大脑模式的显着改善,从而使越来越快,更可靠且更易于访问的脑部计算机接口。已经使用了不同的范式来实现人机的相互作用,最近几年对解释和表征“内部声音”现象的兴趣增加了。这个称为内部语音的范式仅通过考虑它来执行订单,从而提高了执行订单的可能性,从而允许一种“自然”控制外部设备的方式。不幸的是,缺乏公开可用的脑电图数据集,限制了内部语音识别的新技术的发展。提出了根据136个渠道获得的收购系统获得的十个对象数据集和其他两个相关的范例。这项工作的主要目的是为科学界提供内部语音命令的开放式多类脑电图数据库,可用于更好地理解相关的大脑机制。
上下文。Atacama大毫米/亚毫米阵列(ALMA)透露,原始盘的毫米灰尘结构极为多样,从小而紧凑的灰尘盘到具有多个环和间隙的大型灰尘盘。已经提出,内部圆盘中H 2 O发射的强度特别取决于外盘中的冰卵石的涌入,这一过程将与外尘盘半径相关,并且可以通过压力凸起来预防。此外,灰尘结构还应影响内盘中其他气体物种的发射。由于陆地行星可能在内部圆盘区域形成,因此了解其组成是感兴趣的。目标。这项工作旨在评估压降对内盘分子储层的影响。存在尘埃间隙,并可能在圆盘上较远的巨型行星形成,可能会影响内盘的组成,从而影响陆地行星的构建块。方法。使用詹姆斯·韦伯(James Webb)空间望远镜(JWST)上中红外仪器(MIRI)中型仪器(MIRI)中型培养物(MRI)的敏感性和光谱分辨率与Spitzer相比,我们比较了H2 O,H2 O,HCN,C 2 H 2的观察性发射特性,并与Alma观察的二张外粉丝观察,并确认二张外的盘中,并在ALMA观察中进行杂物,并在ALMA观察中涂鸦,并在Alma观察中涂鸦,并在Alma观察中,在Alma观察中,中间涂抹量宽度有数十个天文单位的椎间盘,周围有m⋆≥0的恒星。45m⊙。 结果。 我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。45m⊙。结果。我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。我们使用了新的可见性平面拟合ALMA数据来确定外尘盘半径并识别盘中的子结构。此外,相对缺乏较冷的H 2 O-发射似乎与含碳物种的发射升高有关。,大多数显示碳种类可检测到的发射。盘子和极宽的圆盘似乎作为一个有点独立的群体,具有更强的冷H 2 O发射和弱温暖的H 2 O发射。结论。我们得出的结论是,即使对于具有非常宽的间隙或空腔的盘子,完全阻塞径向尘埃似乎很难实现,这仍然可以显示出明显的冷H 2 O发射。但是,椎间盘之间似乎确实存在二分法,这些椎间盘表现出强烈的冷H 2 O和显示出HCN和C 2 H 2的强烈发射的二分法。对外灰尘盘结构和内盘组成的影响的更好限制需要有关子结构形成时间尺度和圆盘年龄的更多信息,以及将(CO和CO 2)等(Hyper)挥发物(如CO和CO 2)捕获的重要性,例如H 2 O(例如H 2 O),以及CO的化学转化,将CO转化为挥发性较小的物种。
摘要:听力障碍是从儿童(1/500)到老年人(超过75 s的50%),所有年龄段人类的最常见感觉降低。超过50%的先天性耳聋本质上是遗传性的。耳聋的其他主要原因(也可能具有遗传易感性)是衰老,声学创伤,耳毒性药物,例如氨基糖苷和噪声暴露。在过去的二十年中,对遗传性耳聋形式和相关动物模型的研究一直在解密疾病的分子,细胞和生理机制。但是,仍然没有用于感觉性耳聋的治疗方法。目前,听力损失受到康复方法的侵害:常规助听器,对于更严重的形式,耳蜗植入物。e效率正在继续改进这些设备,以帮助用户在嘈杂的环境中了解语音并欣赏音乐。但是,这两种方法都无法介导听力灵敏度的完全恢复和 /或天然内耳感觉上皮的恢复。基于基因转移和基因编辑工具的新治疗方法正在动物模型中开发。在这篇综述中,我们关注在某些内耳条件下成功恢复听觉和前庭功能,为将来的临床应用铺平道路。
1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;liyongliang@ime.ac.cn(YL);zhouna@ime.ac.cn(NZ);xiongwenjuan@ime.ac.cn(WX);zhangqingzhu@ime.ac.cn(QZ);duanyan@ime.ac.cn(AD);gaojianfeng@ime.ac.cn(JG);kongzhenzhen@ime.ac.cn(ZK);linhongxiao@ime.ac.cn(HL);xiangjinjuan@ime.ac.cn(JX);lichen2017@ime.ac.cn(CL);yinxiaogen@ime.ac.cn(XY);wangxiaolei@ime.ac.cn(XW);yanghong@ime.ac.cn(HY);maxueli@ime.ac.cn(XM); hanjianghao@ime.ac.cn (JH); tyang@ime.ac.cn (TY); lijunfeng@ime.ac.cn (JL); yinhuaxiang@ime.ac.cn (HY); zhuhuilong@ime.ac.cn (HZ); luojun@ime.ac.cn (JL); rad@ime.ac.cn (HHR) 2 中国科学院大学微电子研究所,北京 100049 3 北京有色金属研究总院智能传感新材料国家重点实验室,北京 100088 4 北方工业大学电子信息工程学院,北京 100144;zhangj@ncut.edu.cn (JZ); tairanhu1@gmail.com (TH); chrisaigakki@gmail.com (ZC) 5 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典 * 通讯地址:lijunjie@ime.ac.cn (JL);wangguilei@ime.ac.cn (GW);wangwenwu@ime.ac.cn (WW);电话:+ 86-010-8299-5508 (WW)
1 瑞士苏黎世大学医院 (USZ) 耳鼻咽喉头颈外科系内耳干细胞实验室 2 瑞士苏黎世大学 (UZH) 3 瑞士苏黎世功能基因组学中心(苏黎世联邦理工学院和苏黎世大学) 4 瑞士伯尔尼大学生物医学研究系再生神经科学项目 5 美国马萨诸塞州波士顿马萨诸塞眼耳医院 6 美国马萨诸塞州波士顿哈佛医学院 7 美国马萨诸塞州剑桥哈佛干细胞研究所 8 荷兰莱顿大学医学中心耳鼻咽喉和头颈外科系莱顿耳生物学 9 荷兰莱顿大学医学中心诺和诺德基金会干细胞医学中心 (reNEW) 10 美国马萨诸塞州波士顿波士顿儿童医院耳鼻咽喉科 11 波士顿儿童医院 FM 柯比神经生物学中心美国马萨诸塞州波士顿 12 波士顿儿童医院整形与口腔外科部;美国马萨诸塞州波士顿
冥想练习以其压力管理和健康益处而闻名,正越来越多地被纳入健康养生法和慢性病的辅助疗法中。我们认为,在非药理学的外表下,冥想练习可能通过药物靶标调节来发挥作用。在这里,我们利用连接图 (CMap) 来研究 (a) 冥想诱导的分子特征与已确定的药物反应之间的重叠,以及 (b) 有助于冥想治疗效果的途径和机制。这是在一个全面的时间 RNAseq 数据集中研究的,该数据集包含一项临床试验的冥想前、冥想和后续阶段,该试验涉及 106 名练习内在工程冥想的参与者。最引人注目的是,我们观察到冥想特征与 438 多种药物的交集,其中负连接分数和正连接分数≥ 98%,并且个体集群具有不同的反应。这些药物主要针对神经活性配体受体信号通路,广泛用于神经精神疾病、高血压、偏头痛、疼痛、失眠、尼古丁成瘾、酒精中毒和癌症。这项研究强调了以下必要性:(a)以与药物治疗相同的谨慎态度对待冥想;(b)根据个人健康状况、疾病状况和同时服用的药物定制和校准冥想练习;(c)在专家指导下进行冥想。