纳米科学和纳米技术是令人兴奋的研发领域,在电子,光学和磁性设备,生物学,医学,能量和防御中广泛应用。这些领域的核心是具有较低纳米尺度尺寸的新材料的合成,表征,建模和应用,我们称之为“纳米材料”。这些材料可以表现出异常的介质特性,包括纳米颗粒,涂料和薄膜,金属 - 有机框架,膜,纳米合金,量子点,自组件,2D材料,例如石墨烯和纳米管。我们的杂志纳米材料的目标是向跨学科科学受众发表有关纳米材料科学各个方面的最高质量论文。我们的所有文章都以严格的裁判和开放式出版。
摘要:荧光水凝胶是可移植生物传感器的候选材料,可用于护理点诊断,因为(1)与免疫色谱测试系统相比,它们具有更大的结合有机分子结合能力,该测试系统由三维水凝胶结构中的属性标记确定; (2)相比,荧光检测比对金纳米颗粒或染色乳胶微粒的比色检测更敏感; (3)可以调整凝胶基质的性能,以更好地兼容和检测不同的分析物; (4)可以使水凝胶生物传感器可重复使用,适合实时研究动态过程。水溶性纳米晶体被广泛用于体内和体内生物成像,并且基于这些的水凝胶允许将这些特性保存在整体复合大型结构中。在这里,我们回顾了基于纳米晶体获得分析物敏感的泛凝水的技术,用于检测荧光信号变化的主要方法,以及通过使用nanocrystals nanocrystals的表面配体通过溶液 - gel相变的无机水凝胶形成的方法。
电化学能源存储设备对于有效的能源存储和利用至关重要。先进的电化学材料是改善其性能,容量和寿命的关键。本期特刊展示了高级电化学材料,包括电极材料,电解质,接口和设备的最新突破。并包括一系列原始研究文章和批判性评论,重点介绍了高级材料的综合,表征和电化学性能评估。重点是获得对基本方面的见解,例如电荷转移机制,离子扩散动力学和稳定性。通过多学科方法,可以实现对材料属性,电化学行为和设备性能之间关系的全面理解。本期特刊邀请了学术界和行业的研究人员和工程师的贡献,鼓励提交原始研究和关键见解。一起,我们可以推进储能技术并促进可持续的能源未来。
在没有全身性钙和磷酸盐失衡的情况下,基底神经节中脑微血管的抽象钙化是原发性家族性脑钙化(PFBC)的标志,这是一种罕见的神经退行性疾病。在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。 XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。 在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。 血管钙化被血管基底膜包围,位于平滑肌层的小动脉。 与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。 但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。 除了血管钙化外,我们还观察到血管在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。血管钙化被血管基底膜包围,位于平滑肌层的小动脉。与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。除了血管钙化外,我们还观察到血管
超质纳米颗粒(USNS)(纳米颗粒具有流体动力直径<10 nm)的临时发展,并在过去十年中开始在临床试验中出现。这些USN的大多数都显示出相同的特征,包括在血液中短暂的保留时间,快速肾脏清除率以及对达到肿瘤的被动靶向策略的缓解。通过这篇综述,Aguix USN的发展侧重于它们的临床用法,因为它们是被动靶向USN的临床用法,而且由于它们可能在各种前临床前肿瘤模型中验证的肽和单克隆抗体的生物功能化。结果,作者审查了所有当前可以采用和确认的生物功能化策略,这些策略是基于对文献的荟萃分析,即生物功能化的USNS药代动力学和生物分布材料是由USN所决定的,而不是由USN和活跃的靶向靶向小组决定的。另外,与被动靶向的Aguix USN相比,这种主动靶向策略可以改善靶向靶向的肿瘤效率,但也增加了其肿瘤的保留时间,这可能会导致减少注射量/支出的机会。
摘要:需要更绿色的过程满足平台化学物质的需求,以及从人类活动中重复使用CO 2的可能性,最近鼓励了对生物电化学系统(BESS)的设置,优化和开发的研究,以从无线电碳(Co 2,Hco 3-co 3 - )中进行有机化合物的电合合成。在本研究中,我们测试了糖氯丁基乙二醇N1-4(DSMZ 14923)的能力,从而产生乙酸盐和D-3-羟基丁酸的D-3-羟基丁酸,从CO 2:N 2气体中存在的无机碳中产生。同时,我们测试了Shewanella Oneidensis MR1和铜绿假单胞菌PA1430/CO1财团的能力,以提供降低的能力以维持阴极的碳同化。我们测试了具有相同布局,接种物和介质的三个不同系统的性能,但是使用1.5 V外部电压,1000Ω外部负载,并且没有电极或外部设备之间的任何连接(开路电压,OCV)。我们将CO 2同化速率和代谢产物的产生(甲酸盐,乙酸3-D-羟基丁酸)与非电气对照培养物中获得的值进行了比较,并估计了我们的BESS用来同化1摩尔的CO 2的能量。我们的结果表明,当微生物燃料电池(MFC)连接到1000Ω外部电阻器时,糖链球菌NT-1的最大CO 2同化(95.5%),并以Shewanella / Pseudomonas conscontium作为电子来源。此外,我们检测到C. saccharoperbutylacetonicum nt-1的代谢发生了变化,因为它在BES中的活性延长。我们的结果开放了在碳捕获和平台化学物质的电气合成中利用BES的新观点。
jast(锌)是人类生理学中的金属基本元素,其原子MAS 65.38,原子数字30,与氧氧化物作为红氧化物,碳作为碳酸盐,具有硫化硫的硫酸盐或硫酸盐或硫酸盐或用硅酸盐作为硅酸盐的重要元素,是在地球上的重要元素。锌位点由与半胱氨酸,组胺,谷氨酸,天冬氨酸和水有关的Zn多面体组成,有300多个已鉴定的锌酶。锌是制备锌指蛋白,酶和激素的。它在许多疾病和生物学功能中都使用,例如咳嗽,发烧,白血病,烧伤,腹泻,预防癌症和免疫力,心血管系统中枢神经系统糖尿病糖尿病性抑郁症病毒性疾病冠状病毒疾病,人类免疫缺陷病毒。锌是生物功能和健康的最重要的无机元素。
估计每μg/kg的95%上限额外额外风险高于零剂量的风险估计值,该剂量与0.0365μg/kg的美国背景剂量相关,其中包括0.02μg/kg - 来自饮食的0.02μg/kg - 来自饮食的天数,以及来自0.0165μg/k的日子(参见至0.0165μg-ke/k k and k。 4.3.4)。b EPA的寿命额外风险每μg/kg天剂量高于背景的剂量越来越高于膀胱高于0.2μg/kg天的非线性(请参阅第4.3.5节)和肺癌(请参阅第4.3.6节)癌症。对于这些健康结果,不应从CSF获得非线性区域的风险估计,而应从这些部分提供的非线性多项式方程中获得。c癌症斜率因子为17.6(mg/kg-day)⁻1(mg/kg-day)和31.7(mg/kg-day)⁻1。d按照氯普伦的毒理学评论中所述计算(美国EPA,2010年),假设正常
ACGIH American Conference of Governmental Industrial Hygienists AIC Akaike's information criterion ALD approximate lethal dosage ALT alanine aminotransferase AST aspartate aminotransferase atm atmosphere ATSDR Agency for Toxic Substances and Disease Registry BMD benchmark dose BMDL benchmark dose lower confidence limit BMDU benchmark dose upper confidence limit BML benchmark concentration lower confidence limit BMCU benchmark concentration upper confidence limit BMDS Benchmark Dose Software BMR benchmark response BUN blood urea nitrogen BW body weight CA chromosomal aberration CASRN Chemical Abstracts Service Registry Number CBI covalent binding index CHO Chinese hamster ovary (cell line) CL confidence limit CNS central nervous system CPN chronic progressive nephropathy CYP450 cytochrome P450 DAF循环系统的DAF剂量测定调节因子DCS疾病DEN二乙基硝基胺DMSO DMSO二甲基硫氧化二甲基二甲基二甲基甲酸DNA DNA脱氧核心酸EPA环境保护剂环境保护局FDA食品和药物管理FEV 1二秒ggd gd gd gd gd gd gd gd gd gd gdm glitem glutem ste转移酶GSH谷胱甘肽GST GST谷胱甘肽-S-转移酶HAWC健康评估工作空间协作HB/G-A动物血液:气体分区系数HB/G-H人体血液人体血液:气体分配系数HEC人类等效浓度HED人类等效剂量剂量剂量英雄健康和环境研究在线在线
所有敏捷光谱CRM均使用美国国家标准技术研究所(NIST)开发的高性能光谱方案1认证。认证的浓度和不确定性值都可以追溯到NIST标准参考材料(SRM),以确保最高准确性和完整的可追溯性。NIST使用高性能ICP-OE来证明其SRM 3100系列光谱单元解决方案标准。nist建议所有标准制造商都使用此技术来证明具有高精度,低不确定性和直接可追溯性的单一元素标准,并对NIST SRM 3100系列进行了可追溯性。