电化学能源存储设备对于有效的能源存储和利用至关重要。先进的电化学材料是改善其性能,容量和寿命的关键。本期特刊展示了高级电化学材料,包括电极材料,电解质,接口和设备的最新突破。并包括一系列原始研究文章和批判性评论,重点介绍了高级材料的综合,表征和电化学性能评估。重点是获得对基本方面的见解,例如电荷转移机制,离子扩散动力学和稳定性。通过多学科方法,可以实现对材料属性,电化学行为和设备性能之间关系的全面理解。本期特刊邀请了学术界和行业的研究人员和工程师的贡献,鼓励提交原始研究和关键见解。一起,我们可以推进储能技术并促进可持续的能源未来。
Population Tier Staff Categories 2500 - 4000 2 Collection, 1 Sorting/Organics, 1 Sorting/Inorganics, 1 Finances, 1 Admin 1500 - 2500 2 Collection, 1 Sorting/Organics, 1 Sorting/Inorganics, 1 Finances/Admin 900 - 1500 2 Collection, 1 Sorting/Organics, 1 Sorting/Inorganics, 1 Finances/Admin 450 - 900 3 Collection/Sorting/Management, 1 Finances/Admin <450 2收集/分类/管理,1财务/管理员
生物无机化学 - 生物系统中的I金属离子,必不可少的和微量的金属,由于金属缺乏和治疗而引起的疾病:铁,锌,铜,铜,锰,钠,钾,钾,镁和钙。金属复合物作为治疗剂:癌症治疗中的金属复合物,用于治疗类风湿关节炎的金属复合物,糖尿病中的钒,金属络合物作为无线电诊断剂。由于非生物学的毒性治疗:螯合疗法和螯合/解毒剂的要求。用毒药使惰性的解毒剂机理:砷,铅,汞,铁,铜,p,氰化物,氰化物和一氧化碳中毒。离子跨膜的运输和离子跨生物膜,离子载体的主动转运。 能量传播中的金属络合物:叶绿素,照片系统-I和II在水和模型系统的裂解中。离子跨膜的运输和离子跨生物膜,离子载体的主动转运。能量传播中的金属络合物:叶绿素,照片系统-I和II在水和模型系统的裂解中。
JufoID 名称 63015 数学和计算应用 76843 对称性 78756 物理学前沿 81052 光子学 81370 材料前沿 84490 星系 86118 天文学和空间科学前沿 87816 宇宙 88023 凝聚态物质 88264 声学 89047 物理学 89352 等离子体 90273 微 90667 原子 90976 光学 91414 纳米技术前沿 91958 振动 81369 化学前沿 90599 环境化学前沿 58652 国际分子科学杂志 63559 分子 75751 晶体 84055 凝胶 86402 化学传感器86948 无机物 88806 化学 89295 表面 91178 光化学 71359 遥感 75065 挑战 82646 气候 84003 地球科学 85031 大气 85032 海洋科学与工程杂志 85215 环境 87868 水文学 88031 第四纪 90988 地球 88777 真菌杂志 70600 昆虫 75091 多样性 75148 植物科学前沿 81171 海洋科学前沿 82645 植物
气相渗透 (VPI) 是一种聚合后改性技术,可将无机物注入聚合物中以产生具有新特性的有机-无机混合材料。关于 VPI 工艺背后的化学动力学,我们仍有许多未解之谜。本研究旨在更好地了解控制三甲基铝 (TMA) 和 TiCl 4 渗透到 PMMA 中形成无机-PMMA 混合材料的工艺动力学。为了获得深入见解,本文首先研究了根据最近提出的 VPI 反应扩散模型计算出的无机物时空浓度的预测结果。该模型深入了解了 Damköhler 数(反应与扩散速率)和非 Fickian 扩散过程(阻碍),这些过程是由材料从聚合物转变为混合材料而产生的,如何影响无机浓度深度剖面随时间的变化。随后,收集了 90 °C 和 135 °C 下 TMA 和 TiCl 4 渗透 PMMA 薄膜的实验性 XPS 深度剖面。将这些深度剖面在不同渗透时间下的功能行为与各种计算预测进行定性比较,并得出关于每个过程机制的结论。对于本文研究的薄膜厚度(200 nm),TMA 渗透到 PMMA 中似乎从低温(90 °C)下的扩散限制过程转变为高温(135 °C)下的反应限制过程。虽然 TMA 似乎在几个小时内完全渗透到这些 200 nm 的 PMMA 薄膜中,但 TiCl 4 渗透到 PMMA 中的速度要慢得多,即使在前体暴露 2 天后也不会完全饱和。在 90 °C 下的渗透速度非常慢,以至于无法得出关于机制的明确结论;然而,在 135 °C 下,TiCl 4 渗透到 PMMA 中显然是一个反应限制过程,TiCl 4 仅在几分钟内渗透到整个厚度(低浓度),但无机负载在 2 天内以均匀的方式持续增加。近表面与反应限制过程预期的均匀加载偏差也表明 TiCl 4 渗透到 PMMA 中的扩散阻碍很大。这些结果展示了一种新的非原位分析方法,用于研究气相渗透的速率限制过程机制。
解释无机成分深度分布以了解气相渗透过程中的限速步骤 Shuaib A. Balogun 1、Yi Ren 2、Ryan P. Lively 2 和 Mark D. Losego 1,* 1 佐治亚理工学院材料科学与工程学院,美国佐治亚州亚特兰大 2 佐治亚理工学院化学与生物分子工程学院,美国佐治亚州亚特兰大 *电子邮件:losego@gatech.edu 摘要 气相渗透 (VPI) 是一种聚合后改性技术,它将无机物注入聚合物中以创建具有新性能的有机-无机杂化材料。关于 VPI 工艺背后的化学动力学,我们仍有许多未解之谜。本研究的目的是更好地了解控制三甲基铝 (TMA) 和 TiCl 4 渗透到 PMMA 中形成无机-PMMA 杂化材料的工艺动力学。为了获得深刻见解,本文首先研究了根据最近提出的 VPI 反应扩散模型计算出的无机物时空浓度的预测结果。该模型深入了解了材料从聚合物转变为混合物时产生的 Damköhler 数(反应与扩散速率)和非 Fickian 扩散过程(阻碍)如何影响无机浓度深度剖面随时间的变化。随后,收集了 90 °C 和 135 °C 下 TMA 和 TiCl 4 渗透 PMMA 薄膜的实验性 XPS 深度剖面。将这些深度剖面在不同渗透时间下的功能行为与各种计算预测进行定性比较,并得出关于每个过程机制的结论。对于本文研究的薄膜厚度(200 nm),TMA 渗透到 PMMA 中似乎从低温(90 °C)下的扩散限制过程转变为高温(135 °C)下的反应限制过程。 TMA 似乎可以在几个小时内完全渗透这些 200 nm 的 PMMA 薄膜,但 TiCl 4 渗透到 PMMA 中的速度要慢得多,即使在前体暴露 2 天后也未完全饱和。90 °C 下的渗透速度非常慢,无法得出有关机理的明确结论;然而,在 135 °C 下,TiCl 4 渗透到 PMMA 中显然是一个反应限制过程,TiCl 4 仅需几分钟即可渗透整个厚度(低浓度),但无机负载在 2 天内以均匀的方式持续增加。近表面与反应限制过程预期的均匀负载的偏差也表明 TiCl 4 渗透到 PMMA 中的扩散阻碍很大。这些结果展示了一种新的非原位分析方法,用于研究气相渗透的限速过程机制。
由于其高理论能量密度,抽象锂硫电池被认为是能源存储设备的有前途的候选者。提出了各种方法,以打破阻止Li-S电池实现实际应用的障碍。最近,研究人员认可了极性材料与多硫化物之间强烈的化学相互作用的重要性,以提高LI-S电池的性能,尤其是在班车效应方面。极性材料与非极性材料不同,由于其内在的极性而没有任何修饰或掺杂的多硫化物相互作用,从而吸收了极性多硫化物,从而抑制了臭名昭著的穿梭效应。此处审查了LI-S电池极性材料的最新进展,尤其是化学的极线相互作用对固定溶解的多硫化物的效果,并且讨论了极性材料的固有性能与LI-SCTURTIES的电化学性能之间的关系。极性材料,包括阴极中的极性无机物和极性有机物作为LI-S电池的粘合剂。最后,还提出了LI-S电池中使用的极性材料的未来方向和前景。
环境中的有机化合物,例如农药,通过转化为羰基化合物,例如甲醛,乙醛和丙酮,将其降解为无机物质。2,37种羰基化合物的4-二硝基苯氢唑酮用2,4-二硝基苯基氢氮(DNPH)制备。使用HPLC-MAS光谱仪获得其ESI负光谱和EI阳性光谱。ei阳性光谱比ESI负光谱显示更多的离子,除非两个音纸。分子离子(M +)的羰基-DNPHs在除8个hydrazone外的情况下是EI正谱中的基本峰。通过ESI负光谱获得许多用于鉴定特定羰基化合物的重要离子。使用新开发的ESI阴性光谱法(在样品中发现的水平)成功进行了各种废水中丙酮的分析,范围为2.1 mg/l至135.0 mg/l。在各种水样中,丙酮降解速率的类似测试的结果表明,护城河水中的丙酮在18天后完全降解,而70%的丙酮在65天后仍留在纯净水中,这表明微生物在环境中碳碳中的化合物降解中可能起重要作用。