红外图像中的多级对象检测对于军事和平民使用很重要。深度学习方法可以获得高精度,但需要大规模数据集。我们提出了一个生成数据增强框架文档,用于使用有限数据的红外多级对象检测。本文的贡献是四倍。首先,Doci-Gan被设计为有条件的图像介绍框架,得出配对的红外多级对象图像和注释。其次,为文本到图像转换器配制了将文本格式对象注释转换为边界框掩码映像,从而导致增强是掩盖图像 - 图像 - 绘制图像图像翻译。第三,产生了基于多形态侵蚀的损失,以减轻对本地背景和全球背景的涂料不一致的不一致性。最后,为了生成各种图像,人工多级对象注释在增强过程中与真实的对象注释集成在一起。实验结果表明,具有高质量红外多级对象图像的文档增强数据集,从而提高了对象检测基准的准确性。
最近的视频介绍方法通过利用光学流以引导像素传播的参考帧或特征空间中的像素传播,从而实现了令人鼓舞的改进。但是,当蒙版面积太大并且找不到像素对应关系时,它们会产生严重的伪影。最近,Denois的扩散模型在产生多样化和高质量的图像时表现出了令人印象深刻的表现,并且已在许多作品中被用于图像插图。但是,这些方法不能直接应用于视频以产生时间连接的覆盖结果。在本文中,我们提出了一个名为Vipdiff的无训练框架,该框架在反向扩散过程中调节扩散模型,以产生时间连接的涂漆结果,而无需任何培训数据或对预训练的模型进行微调。Vipdiff将光流作为指导,从参考帧中提取有效的像素,以作为优化随机采样的高斯噪声的约束,并使用生成的结果来进一步的像素传播和条件生成。Vipdiff还可以通过不同的采样噪声产生各种视频介绍结果。实验表明,我们的Vipdiff在时空连贯性和保真度方面都超过了最先进的方法。
图像介绍是一种有前途但具有挑战性的方法,它填充了图像中巨大的自由形式空白区域。最近的大多数论文都集中于将蒙面的图像分成2个有效和无效元素的矩阵,从而使系统更加复杂。本文提出了一种名为Reconv的新型算法,该算法使用重复的标准卷积操作,该操作以相同的方式处理图像的有效元素和无效元素。我们建议的方法的结果重新配置,表明,与较早的方法相比,我们的系统产生的输出更适合于现实世界应用。在药物和酒精成瘾治疗和研究的背景下,该技术提供了几种独特而新兴的应用,例如治疗性视觉刺激修饰。介绍技术可以填补与成瘾相关图像中缺少的数据,例如损坏的MRI扫描或不完整的调查响应,从而增强了成瘾研究中使用的机器学习模型的预测能力。对两种数据集类型的广泛比较研究验证了我们的方法。使用PSNR,SSIM和FID等不同措施评估了建议策略的有效性。结果表明,与现有的现代方法相比,我们建议的方法在性能方面表现出色。
摘要 - 本文提出了一种掩盖优化方法,用于使用图像介入来提高对象去除的质量。在许多现实情况下,许多介绍方法都经过一组随机掩码的训练,但在许多现实的情况下,indpainting的目标可能是一个对象,例如一个人。训练和推理图像中掩模之间的域间隙增加了介入任务的难度。在我们的方法中,通过训练通过分割提取的对象掩码训练介入网络来解决此域间隙,并且在推理步骤中也使用了此类对象掩码。此外,为了优化对象蒙版的介入,分割网络已连接到indpainting网络,并端到端训练以提高镶嵌性能。通过我们的面具扩展损失实现大型面具和小型面具之间的权衡,这种端到端训练的效果进一步增强了。实验结果证明了我们方法使用图像介入的方法去除对象的有效性。索引术语 - 图像inpainting,对象分割,对象删除
摘要:Palimpsests是已被刮擦或洗涤以重复使用的手稿,通常是另一个文档。恢复这些工具的不足文字对人文学者的学者具有重大兴趣。因此,学者经常采用多光谱成像(MSI)技术来渲染可见的无斑点。尽管如此,在许多情况下,这种方法可能不够,因为所得图像中的不足仍然被过度文字所掩盖。生成人工智能领域的最新进展为识别高度复杂的视觉数据中的模式并相应地重建它们的前所未有的机会。因此,我们提出将这一挑战作为计算机视觉中的一项介绍任务,旨在通过生成图像插入来增强未底文本的可读性。为了实现这一目标,我们设计了一种新的方法来生成合成的多光谱图像数据集,从而提供了大量的培训示例而无需手动注释。此外,我们还采用了该数据集来微调生成涂层模型,以提高palimpsest Undertext的可读性。使用来自西奈山的高加索阿尔巴尼亚底部文字的格鲁吉亚紫菜的彩色和MSI图像证明了这种方法的功效。
有许多用于对MRI图像的大脑磁共振自动分析的算法,以帮助临床决策。然而,为脑肿瘤患者进行自动图像处理是一项挑战,因为许多算法旨在分析健康的大脑,并且可能无法有效地处理病变的图像。这种算法的例子包括大脑解剖学解析,组织分割和脑提取。我们提出,通过患病的脑扫描进行健康的脑部扫描可能会解决这一挑战,并且该问题被提出为3D涂上任务[1]。在计算机愿景中的一项基本任务中,多年来一直在进行重要的进步。其主要目标是在2D自然图像中实际填充缺失区域,从而实现各种应用,包括图像恢复,对象删除和图像完成。计算机视觉社区已经开发了许多复杂的算法,这些算法在二维图像的背景下应对挑战,取得了令人印象深刻的结果,并推动了该领域的最新艺术品。尽管在2D介绍中取得了显着的进展,但这些算法对3D领域的适应,尤其是在医学成像的背景下,仍然是一个开放的问题。本文旨在探讨与MRI扫描3D介入相关的挑战,并研究适应的可行性
脑肿瘤延迟标准的预处理工作流程,以进行进一步检查。脑介绍提供了一种可行的,但困难的肿瘤组织加工解决方案,这对于提高诊断和治疗的精度是必不可少的。但是,在捕获脑成像中固有的复杂的非线性潜在表示方面,通常会面临挑战。为了完成高质量的健康脑组织重建,这项工作提出了Diffkan Inpainting,这是一种创新的方法,将扩散模型与Kolmogorov-Arnold Networks架构融为一体。在置换过程中,我们介绍了重新粉刷的方法和肿瘤信息,以生成更高的保真度和更光滑的边缘的图像。定性和定量结果都表明,与最先进的方法相比,我们提出的Diffkan Inpainting Inpaints对Brats数据集更详细和现实的重建。从消融研究中获得的知识为将来的研究提供了见解,以平衡绩效与计算成本。
摘要。传统的图像介绍任务旨在通过引用周围背景和前景来恢复所破裂的区域。但是,需求不断增长的对象擦除任务旨在消除对象并产生和谐的背景。以前的基于GAN的涂料方法与复杂的纹理产生斗争。基于新兴扩散模型的算法(例如稳定的扩散插图)具有产生新内容的能力,但它们通常会在擦除的物体的位置产生不一致的结果,并且需要高质量的文本提示输入。为了应对这些挑战,我们引入了魔术师,这是一个针对对象擦除任务量身定制的基于扩散模型的框架。它由两个阶段组成:内容初始化和可控生成。在后阶段,我们开发了两个插件模块,称为及时调整和语义意识到的注意力。此外,我们提出了一种数据构建策略,该策略生成了特别适合此任务的培训数据。Magiceraser在减轻不希望的伪像的同时,可以很好地控制内容产生。实验结果突出了我们在对象擦除任务中的有价值的进步。
Brian tumor segmentation in MRI Images using Deep Learning Techniques 2 No Shree Lakshmi H Dr. Mallikarjun A 2020 On Duty Traffic Personel Behavior analysis using AI 0 No Praveen Gurav Dr. Santosh S. Saraf 2015 Not avialbe 0 No Gajanan Tudavekar Dr. Santosh S. Saraf 2016 H.264 Video Inpainting and Error Concealment Techniques 4 No Ms. J.d .mallapur