与大多数动物一样,昆虫与微生物有着密切的相互作用,这些微生物可能影响昆虫宿主的脂质代谢。在本章中,我们描述了迄今为止有关原核生物微生物在昆虫脂质代谢中起的作用的知名度。我们开始探索以内共生体为重点的微生物 - 脂质相互作用,并更具体地探索了在果蝇中不存在研究的肠道微生物群。然后,我们继续概述在常见且研究充分的wolbachia pipientis上所做的工作,这也与其他微生物有关。采用一个略有不同的角度,然后研究人类病原体(包括登革热和其他病毒)对蚊子载体脂质的影响。我们扩展了有关人类病原体的工作,并包括与内共生膜的相互作用
摘要 由于农作物遭受虫害,全球农民遭受了巨大的产量损失,损失幅度从 5% 到 30% 不等,此外收获后损失还高达 3% 到 20%。人们使用各种技术来减轻这些问题,包括生物、文化和物理方法。但新技术的出现,尤其是人工智能 (AI),为有效的害虫防治创造了新的机会。本文探讨了人工智能 (AI)(特别是 CNN 模型)在定位害虫、跟踪害虫数量和预测可能的害虫爆发方面的应用。通过实施 AI 系统,农民可以在达到经济损失水平 (EIL) 之前采取主动措施。引言
该研究于 2022-2023 年在肯尼亚西部的基苏木县开展。从大片城乡连续区采集的田间冈比亚按蚊 (sl) 幼虫使用世界卫生组织 (WHO) 敏感性测试进行表型分析,分为对六种不同杀虫剂具有抗性或敏感。使用聚合酶链式反应 (PCR) 技术鉴定冈比亚按蚊复合体的种类,并筛选电压门控钠通道 (Vgsc-1014F、Vgsc-1014S、Vgsc-1575Y) 突变和乙酰胆碱酯酶 (Ace1) 靶位突变 119S。使用微孔板测定法评估了未接触杀虫剂的蚊子的代谢酶活性(非特异性 β 酯酶和单加氧酶)。此外,在幼虫采样期间,还进行了回顾性问卷调查,以确定当地居民的杀虫剂使用情况。
在其中:成功的候选人将位于比勒陀利亚大学的林业和农业生物技术研究所(Fabi,www.fabinet.up.ac.za)。由于这些是行业部门资助的项目,因此,成功的候选人将在其工作地点保持正常的办公时间。薪酬:提供两年的全额奖学金。申请流程:将以下电子邮件发送给米歇尔·施罗德(MichelleSchröder)博士(Michelle.schroder@fabi.up.ac.za),到2025年11月15日:(1)包括您的研究兴趣(2)CV的求职信,包括三个参考的联系信息,包括三个参考文献。资金由科学与创新部通过林业南非管理的森林部门创新基金提供。https://www.forestrysouthafrica.co.za/
摘要 :昆虫是最大的动物群之一,由于其多样性、在农业和家庭手工业中的经济意义以及作为传粉者和各种疾病媒介的生态功能而发挥着至关重要的作用。遗传学的重大进步为许多昆虫物种的基因身份和序列提供了大量信息。这些遗传资源促进了旨在开发改良遗传性状的基因组编辑研究。昆虫不育技术(SIT)就是这样一种策略,它已有效地用于北美的螺旋蝇,并继续用于管理昆虫害虫。通过 RNA 干扰(RNAi)进行的基因沉默是模型昆虫研究中的基本基因组工具,也已应用于各种生物学研究。然而,它在害虫中的效率各不相同,限制了它的广泛使用。其他基因编辑方法包括使用锌指核酸酶 (ZFN) 和转录激活因子样效应物核酸酶 (TALEN) 诱导 DNA 中的双链断裂 (DSB),从而刺激目标序列的非同源末端连接或同源定向修复。最近,CRISPR/Cas9(成簇的规律间隔短回文重复序列/CRISPR 相关蛋白 9)系统已迅速成为跨多个领域的变革性基因组编辑方法,包括农业、昆虫抗性管理、环境安全、人类健康和工业。本文概述了昆虫中使用的各种基因组编辑技术,特别关注尖端 CRISPR/Cas 系统的应用和未来潜力,该系统有望超越其他基因组编辑方法。
噬菌体 DNA 分离试剂盒产品说明书 产品编号 46800 Norgen 的噬菌体 DNA 分离试剂盒提供了一种快速方法,可从在液体培养的细菌中繁殖的噬菌体中分离和纯化总 DNA。无需使用苯酚、氯仿或氯化铯即可分离 DNA。基于旋转柱的程序速度很快,可在 45 分钟内完成。该试剂盒可高效处理少量噬菌体上清液 (1 mL)。纯化的 DNA 具有最高的完整性,可用于多种下游应用,包括南方印迹、限制性片段长度多态性 (RFLP)、测序、克隆和实时 PCR。Norgen 的纯化技术 纯化基于旋转柱层析。无需使用苯酚、氯仿或氯化铯,即可优先从其他细胞成分(如蛋白质)中纯化噬菌体 DNA。该程序的起始材料是澄清的噬菌体上清液,该上清液已从液体培养物中的细菌碎片中分离出来。首先,使用提供的裂解缓冲液 B 通过热和化学裂解过程裂解噬菌体颗粒(请参阅第 4 页的流程图)。将异丙醇添加到裂解物中,然后将溶液加载到旋转柱上。Norgen 的旋转柱以取决于离子浓度的方式结合核酸,因此只有 DNA 会与柱结合,而大多数 RNA 和蛋白质会在流过中被去除。然后用提供的洗涤溶液 A 洗涤结合的 DNA 以去除任何残留杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的总噬菌体 DNA 具有最高的完整性,可用于许多下游应用。试剂盒组件
噬菌体 DNA 分离试剂盒产品说明书 产品编号 46800 Norgen 的噬菌体 DNA 分离试剂盒提供了一种快速方法,可从在液体培养的细菌中繁殖的噬菌体中分离和纯化总 DNA。无需使用苯酚、氯仿或氯化铯即可分离 DNA。基于旋转柱的程序速度很快,可在 45 分钟内完成。该试剂盒可高效处理少量噬菌体上清液 (1 mL)。纯化的 DNA 具有最高的完整性,可用于多种下游应用,包括南方印迹、限制性片段长度多态性 (RFLP)、测序、克隆和实时 PCR。Norgen 的纯化技术 纯化基于旋转柱层析。无需使用苯酚、氯仿或氯化铯,即可优先从其他细胞成分(如蛋白质)中纯化噬菌体 DNA。该程序的起始材料是澄清的噬菌体上清液,该上清液已从液体培养物中的细菌碎片中分离出来。首先,使用提供的裂解缓冲液 B 通过热和化学裂解过程裂解噬菌体颗粒(请参阅第 4 页的流程图)。将异丙醇添加到裂解物中,然后将溶液加载到旋转柱上。Norgen 的旋转柱以取决于离子浓度的方式结合核酸,因此只有 DNA 会与柱结合,而大多数 RNA 和蛋白质会在流过中被去除。然后用提供的洗涤溶液 A 洗涤结合的 DNA 以去除任何残留杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的总噬菌体 DNA 具有最高的完整性,可用于许多下游应用。试剂盒组件
一项针对 18 至 49 岁成年人的小型 2 期试验(研究 5)的反应原性数据未提供,其中 153 人接受了 Flublok 135mcg。但是,研究 5 中的受试者包括在死亡和严重不良事件 (SAE) 的描述中。在所有研究中,在接种疫苗后 7 天内使用记忆辅助工具征求局部(注射部位)和全身不良反应,并在接种疫苗后 28-30 天内收集未经请求的不良反应。在研究 1-3 和 5 中,在接种疫苗后 6 个月内通过诊所就诊或第 28 天的电话随访、第 180 天的电话随访或通过自发报告收集 SAE。研究 4 在接种疫苗后 30 天内收集了 SAE。研究 4 还在接种疫苗后 30 天内积极征求预先指定的常见超敏反应作为主要终点。
本文档及其内容归 Illumina, Inc. 及其附属公司 (“Illumina”) 所有,仅供其客户在使用本文所述产品时按照合同使用,不得用于其他目的。未经 Illumina 事先书面同意,不得将本文档及其内容用于其他目的或分发,也不得以任何方式传播、披露或复制本文档及其内容。Illumina 不会通过本文档转让其专利、商标、版权或普通法权利下的任何许可,也不会转让任何第三方的类似权利。
自主机器人组装的摘要最新进步已显示出令人鼓舞的结果,尤其是在应对精确插入挑战方面。但是,在不同的对象类别和任务之间实现适应性通常需要一个学习阶段,需要昂贵的现实世界数据收集。先前的研究通常假定插入的对象对机器人的末端效果的刚性附着,或者依赖于结构环境中的精确校准。我们提出了一种单发方法,用于高精度接触富含的操作装配任务,从而使机器人仅使用单个演示图像从随机呈现的方向上执行新对象的插入。我们的方法结合了一个混合框架,该框架将基于6-DOF视觉跟踪的迭代控制和阻抗控制融合在一起,从而通过实时视觉反馈促进高精度任务。重要的是,我们的方法不需要预先训练,并且证明了对摄像头姿势校准误差和物体内部姿势的干扰产生的不确定性的弹性。我们通过在现实世界中的广泛实验进行了拟议框架的效果,涵盖了各种高度精确的组装任务。