[3] 基因编辑技术的出现提供了一种更精确的方法,可以在特定的基因组位置有针对性地插入或修改调控元件。成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9(CRISPR/Cas9)彻底改变了基因编辑领域,为研究人员提供了精确基因改造的有力工具。关键的突破出现在 2012 年,当时 Emmanuelle Charpentier 和 Jennifer Doudna 证明 CRISPR/Cas9 系统可以被编程来切割特定的 DNA 序列,为其作为基因组编辑工具的应用奠定了基础 [4] ,这一发现后来获得了 2020 年的诺贝尔化学奖。事实证明,这项技术对于研究基因功能和改良作物性状非常有价值。虽然 CRISPR/Cas9 已广泛用于基因敲除,但它在通过同源定向修复(HDR)进行基因上调方面的应用仍在发展,尤其是在水稻中 [5] 。基于 HDR 的基因编辑需要同时将 CRISPR/Cas9 表达系统和 DNA 修复模板递送到细胞中。该过程可以通过
在光纤通信中,通常使用光学强度的强度调制方案来传输信号。连贯的光传输协议,其中强度和相位都用于携带信息,也已用于满足更高容量的需求。连贯的光学传输可以通过数字信号处理技术在公里的沙子上进行长途通信,并结合数十种波长在单个光纤中划分。由于这些特征,连贯的光学传输主要用于超过100 km的中继线网络。近年来,由于强度调制以及微型型和降低相干设备的功率消耗,近年来对100 km或更短的DATA中心连接的需求已经迅速增长。
基因组安全港位点 (GSH) 的识别和表征旨在促进一致的转基因活动而不破坏宿主细胞基因组。我们结合基因组注释和染色质结构分析,通过计算方法预测四种 GSH 在人类血吸虫曼氏血吸虫(一种热带地区的主要传染性病原体)中的位置。使用 CRISPR/Cas 辅助的同源定向修复和重叠向导 RNA 将转基因引入寄生虫的卵中。观察到基因编辑效率为 24%,75% 的基因编辑血吸虫卵具有转基因编码荧光。这些结果通过提供一条使用同源定向修复催化转基因插入的转基因蠕虫的可处理途径,推动了血吸虫功能基因组学的发展。这种方法应该普遍适用于蠕虫。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2023 年 4 月 21 日发布。;https://doi.org/10.1101/2023.04.20.537731 doi:bioRxiv preprint
摘要 由于针对致癌突变的靶向治疗取得了巨大成功,因此在诊断出非小细胞肺癌 (NSCLC) 后便会进行分子检测。表皮生长因子受体 (EGFR) 突变是 NSCLC 中最常见的突变,EGFR 外显子 20 插入突变 (exon20ins) 是继 EGFR 外显子 19 缺失和外显子 21 L858R 突变之后的第三大 EGFR 突变。EGFR 外显子 20ins 通常对经典 EGFR 抑制表现出耐药性。mobocertinib 和 amivantamab 两种治疗方法最近成为美国食品药品监督管理局 (FDA) 批准用于治疗铂类疗法后出现这些突变的肺癌的首批药物。围绕这两种药物的研究表明其疗效强劲,但副作用很大。另一个可靶向的驱动突变是人表皮生长因子受体 2 (HER2) 外显子 20ins,约占 NSCLC 患者的 2-3%。这种突变已在体外和临床上得到大量研究,曲妥珠单抗德鲁替康最近刚刚获得 FDA 的加速批准,这是基于 Destiny-Lung01 研究中证明的高效性。然而,与 EGFR 抑制剂类似,HER2 抑制剂在临床研究中也有毒性证据。在本文中,我们讨论了 EGFR 和 HER2 外显子 20 对多种标准治疗方案(例如铂类化疗和经典 EGFR 酪氨酸激酶抑制剂)以及免疫疗法的有限反应。我们还回顾了最近批准和即将推出的靶向治疗方案,考虑了目前正在进行的关于疗效和减少副作用的研究,以及将这些药物纳入已获批准的治疗方案的风险和益处。
利用 TALEN® 技术,我们开发了一种基因编辑过程,通过同源性定向修复在造血干细胞和祖细胞 (HSPC) 中实现高效的基因校正和基因插入。我们首先评估了非病毒线性单链 DNA (LssDNA) 供体模板递送策略与更常用的病毒 (AAV) 递送的潜力。这两种策略均导致基因在体外插入 HSPC。然后,我们比较了 LssDNA 与环化单链 DNA (CssDNA) 的使用情况。我们发现环化显著提高了敲入 (KI) 效率,相对于其线性对应物。有趣的是,KI 的这种增加分别与环状和线性 ssDNA 编辑细胞中更高的存活率和更低的敲除 (KO) 相关。总体而言,我们表明,与 TALEN® 基因编辑相关的非病毒 ssDNA 传递可在长期重新植入的造血干细胞中实现高水平的基因校正。ssDNA 的环化有可能进一步提高 KI 的速率,而不会影响细胞活力和适应性,从而促进下一代细胞疗法的发展。
基于PA-TN5插入模式的TIP-SEQ的峰值呼叫参数的合理设计可提高预测能力。Thomas Roberts(0009-0006-6244-8670),Hiranyamaya Dash(0009-0005-5514-505X),TeemuK.E.Rönkkö(0000-0003-4865-4815)我们每个人都应隶属于: - 伦敦帝国学院的脑科学系,迈克尔·乌伦·枢纽爵士,伦敦怀特城校园,W12 0BZ,英国 - 英国伦敦伦敦帝国学院,英国伦敦伦敦帝国学院,Teemu K.E.Rönkkö,伦敦帝国学院。 Ø,丹麦 *贡献同样抽象的表观基因组分析提供了对控制基因表达的调节机制的见解。在基本水平上,这些机制由结合DNA或修饰染色质的蛋白质确定。Chip-Seq和Cut&Tag等技术在绘制此类蛋白质的结合位点遍布基因组。最近的进步导致了Tip-Seq的发展,Tip-Seq是一种高度敏感的方法,旨在增加每个样品的唯一读数数量。它的设计结果在新的库功能中,尚未通过比较分析探索。通过对生物信息学工具和参数的广泛评估,我们开发了一条分析管道,该管道非常适合TIP-SEQ数据,包括线性重复数据删除,阅读优先级和读取转换。在https://github.com/neurogenomics/peak_calling_tutorial.git上可以在GitHub上获得优化峰通话的教程。使用转录因子结合曲线(TFS),我们表明我们的优化管道大大降低了峰宽度至50%以下,更精确地将峰顶与已知基序保持一致。我们的方法论进步大大提高了TIP-SEQ数据质量,并且周到的分析参数的设计广泛适用于所有基于PA-TN5的分析测定法。
微型,富裕和生物相容性的神经探针有可能规避大脑的异物反应,但手术植入的问题仍然存在。在此,将用于在大鼠海马中植入的探针涂有四个可生物吸收式加劲肋,以确定哪种最有效的辅助插入。通过机械,化学和溶解测试评估加劲液(蔗糖,麦芽糖,丝绸纤维和藻酸盐)。用丝绸纤维涂层后,神经探针的屈曲力从0.31增加到75.99 mn。这是根据随后的成功插入测试进行的。傅立叶变换红外光谱法结果表明,处理后,丝网膜样品样品的β-片含量增加(例如,水退火),并且由于藻酸盐水凝胶的脱水而显示出相关的变化。人工胸腔流体中的定性和定量溶解研究都表明,藻酸盐和丝绸纤维超过了二糖加劲液。在这项工作中,进行了多种多学科分析,以发现具有最高屈曲力,最长的溶解时间和最可调的结构的深脑植入式设备的最佳生物可吸收加强剂。第一次,藻酸盐水凝胶用作加强剂来帮助插入,扩大了其在神经组织工程之外的有用性。
CRISPR 介导的基因组编辑已成为生物性状遗传修饰的有力工具。然而,开发基于同源定向 DNA 修复 (HDR) 的高效、位点特异性基因敲入系统仍然是植物面临的重大挑战,尤其是在杨树等木本植物中。本文表明,同时抑制非同源末端连接 (NHEJ) 重组辅因子 XRCC4 和过度表达 HDR 增强因子 CtIP 和 MRE11 可以提高基因敲入的 HDR 效率。使用这种方法,BleoR 基因被整合到 MKK2 MAP 激酶基因的 3' 端以产生 BleoR-MKK2 融合蛋白。根据 TaqMan 实时 PCR 评估的完全编辑核苷酸,与没有 HDR 增强或 NHEJ 沉默相比,当使用 XRCC4 沉默结合 CtIP 和 MRE11 过度表达时,HDR 介导的敲入效率高达 48%。此外,HDR 增强子过表达和 NHEJ 抑制的组合还提高了基因组靶向效率,使 CRISPR 诱导的插入和缺失 (InDels) 减少了 7 倍,从而对杨树中基于 MKK2 的盐胁迫反应没有功能性影响。因此,这种方法不仅适用于杨树和植物或农作物,也适用于哺乳动物,以提高 CRISPR 介导的基因敲入效率。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 1 月 4 日发布。;https://doi.org/10.1101/2022.09.02.506379 doi:bioRxiv preprint