当前项目•太阳能农场的设计:物理;不同的临床,反照率,温度的影响;跟踪和全球优化。•地面雕刻双面太阳能农场和浮游双面太阳能农场的实验研究(由Ewucrt资助)。•优化面板设置,以减少污垢和清洁成本(由ICT Innovation Fund资助)。•农业 - 伏洛尔电系统的建模和数值分析(由IAR-UIU资助)•基于EGFET的汗水传感器和Zika病毒检测器的研究和数值建模;基于纸张的生物传感器博士项目•光伏的热力学分析:广泛的PV技术的热力学极限(常规PV,有机/激发型PV,双面串联)。•光学模拟:提出和建模两种吸收增强方案 - 分支的纳米线和元摩擦(mm)光捕获(LT)。MM-LT概念可以打破吸收增强的常规极限。•光电模拟:我们应用了耦合的光电模拟框架来分析高效率太阳能电池物理(GAAS细胞,角度限制细胞和双面串联)。双面串联显示出大量产出改进的前景,而添加的制造复杂性很少。•有机光伏(OPV)生长和表征:光电模拟(J-V,EQE)提供了对有机PV(OPV)操作的物理见解。我们已经成长和表征(J-V,EQE)OPV,以支持我们的数值研究和理论。设计来改善这些贫困的移动材料中的载体收集。本科项目•在双工打印文档扫描中取消噪声;语音抑制
生命支持系统 (LSS) 对载人航天至关重要;没有它们,人类就无法生存。即将到来的长期任务需要强大的环境控制 LSS (ECLSS),因为它们的日照和即时补给的前景有限。作为 LSS 的一部分,由于运输质量限制,水净化系统将需要高可靠性、可持续性和效率,因为常规供水将非常困难,而且为未来的栖息地补给成本高昂。这表明需要一种高效的处理方法和对每个废水源的再利用。机组人员会产生各种废水流,虽然目前并非所有废水流都经过处理,但栖息地的成功将需要对每条废水流进行处理和利用,作为“资源”而不是“废物”。这些废水流包括人类废水(尿液、粪便)、食物垃圾(盘子垃圾、不可食用的植物生物质)、湿度冷凝水、卫生用水(淋浴、口腔、洗手)和洗衣。由于长期运营,人们通常依赖成熟的技术。对于未来长期任务,这种模式必须转变,纳入以满足任务要求为基础的技术,而不是牺牲生产力来取代经过验证的现有技术能力。许多物理、化学和生物水处理技术已被证实并可用于陆地应用。在此,这些技术被收集到一个“工具箱”中,以在重力减小的情况下执行有效水净化步骤的可能功能。选择标准取决于方法(物理、化学或生物)、复杂性/组件、陆地性能和对太空生命支持的潜在适用性。利用这种“工具箱”方法为技术开发和选择未来架构提供了一种简化的方法,以直接响应动态空间生命支持要求。建立“工具箱”还可以有组织、高效地识别最合适的技术。从那里,可以进一步开发和适当评估最有可能配置为任务要求的技术。本演讲旨在全面回顾空间生命支持水净化要求和挑战,并提出可用技术的“工具箱”方法,以帮助完成为短期和长期 NASA 任务架构选择合适的 LSS 水净化的艰难过程。
Rahul Changa气候变化对圭亚那构成了迫在眉睫的威胁,海平面上升,极端天气事件的频率增加直接影响我们的沿海社区和自然生态系统。作为一个拥有生物多样性和自然资源的国家,从化石燃料到清洁能源的需求从来都不是至关重要的。这种转变不仅对于减少温室气体排放至关重要,而且对于增强能源安全和促进可持续经济发展至关重要。从历史上看,圭亚那很大程度上依靠化石燃料来发电和运输。在2020年,该国约90%的电力来自化石燃料,主要是天然气和重型燃油。这些燃料的燃烧负责大量的温室气体排放,约占该国总排放量的70%。随着全球温度的升高,这种依赖的后果变得越来越严重,威胁着我们的农业,供水和公共卫生。政府间气候变化小组(IPCC)警告说,如果不立即采取行动减少排放,世界可能最早在2030年就面临高于工业水平的1.5°C的温度升高。对于圭亚那来说,这意味着更强烈的降雨,洪水和干旱,这可能会破坏生计并加剧粮食不安全。过渡到清洁能源(例如太阳能,风能和水力发电),为这些紧迫的挑战提供了全面的解决方案。一个值得注意的倡议是在Leguan建造0.60 MW太阳能发电厂。通过过渡到清洁器太阳能在圭亚那很丰富,平均太阳能日光为4.5至5.5 kWh/m²/天,使其成为广泛采用的理想候选者。国际可再生能源局(IRENA)估计,全球可再生能源份额增加一倍,可能会导致到2050年的温室气体排放量高达70%。该设施的储存容量为1.2 MWH,预计每年将二氧化碳排放量减少800吨以上。通过取代化石燃料作为主要电力源,该项目不仅有助于降低温室气体的排放,还可以增强当地社区的能源独立性。清洁能源的经济利益令人信服。根据世界银行的说法,到2030年,投资可再生能源可能会在全球范围内创造约2400万个就业机会。在圭亚那,扩大清洁能源部门可以刺激当地经济并提供可持续的就业机会,尤其是在工作选择有限的农村地区。此外,与清洁能源采用相关的健康益处很大。世界卫生组织(WHO)估计,化石燃料燃烧的空气污染每年造成420万个早期死亡。
在范围内高度国际化的书涵盖了许多国家,并深入探讨了有关气候变化适应的研究和项目。它是寻求促进气候变化适应工作的政府和非政府机构的宝贵资源。本书通过提供该主题的详细概述来填补市场利基市场,使其成为气候变化管理(CCM)系列的一部分。本书着重于可以帮助读者应对气候变化带来的社会,经济和政治挑战的方法,方法和工具。它的目的是通过收集在“第二届世界气候变化适应性研讨会上提出的论文”来加快气候变化适应领域的发展。这本跨学科的书涵盖了气候变化适应领域的各个关键领域,强调了实施气候变化适应的综合方法。文本强调了解决气候变化的重要性,正如政府间气候变化小组(IPCC)发布的第五次评估报告(AR5)和当事方(COP 25)建议的第五次评估报告(AR5)所强调。这本书确实是全面的,不仅涵盖了建模和预测所提供的知识,还涵盖了气候变化的社会,经济和政治含义。已经发表了几十年来,已经发表了关于第四纪晚期的古海洋学和古气候学的研究。学者,例如Cline,Hays,Crane,Crowell,Frakes,Dansgaard,Johnsen和Clausen,为这一研究领域做出了贡献。洛克伍德(Lockwood)长期气候变化 * W.F.的研究研究表明,正如1956年Ewing和Donn首次提出的地球轨道的变化可能是造成冰期的原因。也考虑了其他因素,例如太阳辐射的变化(Hoyle和Lyttleton,1950年)和大气灰尘含量(Davitaya,1969年)。对海平面和冰期后隆起的研究为冰河时代对全球气候的影响提供了证据。例如,Farrand(1962)和Farrell和Clark(1976)的研究表明,海平面的变化与冰川周期密切相关。气候建模已变得越来越复杂,诸如盖茨(Gates)(1976)的冰原气候模型等研究为这种复杂现象提供了新的见解。埃迪(Eddy,1982)探索了太阳变异性在驱动气候变化中的作用,对极地海洋的研究(Crane,1981)揭示了大气与海洋之间的相互作用。还研究了冰川对全球生态系统的影响,包括格罗夫和沃伦(Grove and Warren)(1968年)在非洲关于第四纪地面和气候的研究,为这一领域提供了宝贵的见解。总的来说,这篇研究论文的集合强调了冰河时代的复杂性及其与地球轨道,太阳辐射和大气条件的变化的关系。此参考清单包括有关气候变化和可变性的各种研究和论文。出版了几十年,这些作品探讨了气候科学的不同方面,包括冰河时代的原因,太阳可变性和天气模式之间的关系以及人类活动对环境的影响。气候变化。此列表中提到的一些关键作者包括: * G. Kukla,他写了有关冰间术的轨道签名 * H.H.兰姆(Lamb)是一位著名的气候学家,他发表了两卷有关气候,过去和未来的卷。ruddiman在氧气同位素和古磁性地层上进行的研究。该清单还包括与气候变化相关的各种主题,例如: *风险的原因 * * *的环境 *改变地质时标。总的来说,此参考列表提供了对气候变化和可变性的科学理解的全面概述,突出了该领域的主要作者,研究和发现。巴黎:联合国教科文组织,pp。277–281。Google Scholar Taylor,B。L.,T。Gal-Chen和S. H. Schneider,1980。火山喷发和长期温度记录,q。jour。皇家陨石。Soc。106,175–199。Google Scholar Turekian,K。K.(ed。),1971年。晚期的冰川冰期年龄。纽黑文:耶鲁大学出版社。Google Scholar Vernekar,A。D.,1972。远程辐射的长期全球变化,陨石。Monogr。12,编号34。冰川学5,145–158。波士顿;美国气象学会。Google Scholar Weertman,J。,1964年。在非平衡冰盖上的生长速度或收缩率,Jour。Google Scholar Weertman,J。,1966年。基底水层对冰盖尺寸的影响,jour。冰川学6,191–207。Google Scholar Weertman,J。,1976。Milankovitch太阳辐射在冰河时代冰盖尺寸,自然261,17-20。Google Scholar Weyer,E。M.,1978。杆运动和海平面,自然273,18-21。Google Scholar Weyl,P。K.,1968。海洋在气候变化的原因中的作用在气候变化中。Monogr。8,J。Mitchell(编辑)。波士顿:美国气象学会,pp。37–62。Google Scholar Williams,J。,1975。雪地对大气循环的影响及其在气候变化中的作用,Jour。应用。陨石。14,137–152。Google Scholar Wilson,A。T.,1964年。冰的起源:冰架理论,自然201,147-149。Google Scholar Wilson,A。T.,1966年。太阳能对南极区域的变化作为触发,自然210,477–478。Google Scholar Wilson,A。T.,1970年。南极冰潮,南极期间。美国5,155–156。Google Scholar Woerkom,A。J. Van,1953年。气候变化的天文学理论,在气候变化中,H。Shapley(ed。)。剑桥,马萨诸塞州:哈佛大学出版社,pp。147–157。Google Scholar Wollin,G.,1974。Goemagnetic变化和气候变化,Colloq。int。CNRS 219,273–286。Google Scholar Wollin,G.,D。B. Ericson和W. B. F. Ryan,1971年。磁强度和气候变化的变化,自然232,549–551。Google Scholar Wollin,G.,W。B. F. Ryan和D. B. Ericson,1978年。气候变化,地球轨道,地球和行星SCI的磁强度变化和波动。字母41,395–397。Google Scholar Wright,H。E.和D. G. Frey(编辑),1965年。美国第四纪。普林斯顿:普林斯顿大学出版社。今天,由于对气候如何影响我们的生活质量和环境的公众认识,人们对气候信息的需求不断增长。为了满足这一需求,气候学百科全书提供了对气候所有主要子场的全面覆盖,包括有关主要大陆地区气候的数据以及对气候过程和变化的已知原因的解释。酸雨已成为工业化国家的紧迫环境问题。虽然这个话题经常笼罩在政治言论和情感猜测中,但证据表明,在20世纪后期的几十年中,酸雨将继续越来越关注。要掌握酸雨的性质及其潜在的后果,必须了解酸度的概念以及大气过程如何通过降水影响酸性物质的沉积。酸度的特征是在水基溶液中存在游离氢离子(H+),以对数pH量表进行测量,其中7代表中性,降低值表明酸度增加,而增加值表示碱度。