近年来数据的指数增长导致了从多个来源产生的庞大,异质的数据集。大数据应用程序越来越依赖这些数据集来提取知识,以进行预测分析和决策。但是,数据的质量和语义完整性仍然是关键的挑战。在本文中,我们提出了一个受脑启发的分布式认知框架,该框架将深度学习与Hopfield Network集成,以识别和链接多个数据集的语义相关属性。我们的方法对人脑的双半球功能进行了建模,右半球在其中处理并吸收了新信息,而左半球则检索学习的表示形式以建立有意义的关联。认知体系结构在MapReduce框架上运行,并链接存储在Hadoop分布式文件系统(HDFS)中的数据集。通过将深层田网络作为一种关联内存机制纳入,我们的框架可以增强经常同时发生属性的回忆,并根据不断发展的数据使用模式动态调整关系。实验结果表明,随着时间的流逝,霍普菲尔德记忆中具有强大关联烙印的属性会得到加强,而相关性降低的属性逐渐削弱 - 这种现象类似于人类记忆的回忆和遗忘。这种自优化的机制可确保链接的数据集具有上下文有意义,从而提高数据歧义和整体集成精度。我们的发现表明,将深层网络与分布式认知处理范式相结合,为在大规模环境中管理复杂的数据关系提供了可扩展且具有生物学启发的方法。
本文介绍了山羊优化算法(GOA),这是一种新型的生物启发的元疗法,灵感来自山羊的适应性行为。从他们的觅食策略,运动模式和逃避寄生虫的能力中汲取灵感,果阿旨在有效地平衡探索和剥削。该算法结合了三种关键机制:用于全球搜索的自适应觅食策略,一种用于精炼解决方案的运动方法以及一种跳跃机制来逃避本地Optima。此外,解决方案过滤过程通过维持人群中的多样性来增强鲁棒性。果阿的性能是针对良好的元启发术评估的,包括颗粒群优化(PSO),灰狼优化器(GWO),遗传算法(GA),鲸鱼优化算法(WOA)和人造Bee Colony(ABC)。比较结果证明了果阿的出色收敛速度,增强的全球搜索效率以及提高的解决方案精度。这些改进的统计意义将通过Wilcoxon Rank-sum检验验证。尽管有效,果阿仍面临一些挑战,包括计算复杂性和对参数设置的敏感性,这为进一步的优化留出了空间。未来的研究将探讨自适应参数调整,与其他元启发式学的杂交以及供应链管理,生物信息学和能量优化的现实应用。调查结果表明,果阿在生物启发的优化技术方面提供了有希望的进步。
近年来,需要使用便携式,可穿戴或可植入的电子设备来处理生物医学信号。这些功能由少量电池进行操作,因此能节能的ADC成为基本组件。生物传感器广泛用于葡萄糖监测,DNA测序,食物分析和微生物分析等应用中。其中一些生物剂翻译了一种生物学标记,该生物标志物的对数尺度(Thanachayanont,2015年)将其变化为curlant输出信号,因此,对数CDC是对他们来说更自然的读数设备。In addition, a log- arithmic ADC (Sit and Sarpeshkar, 2004) (Mahat- tanakul, 2005) (Rhew et al., 2014) (Sundarasaradula et al., 2016) (Danial et al., 2019) can perform analog- to-digital conversions with non-uniform quantization thus it can convert small signals with high resolu- tion and large signals with coarse resolution, which与线性ADC相比,启用处理大的输入动态范围信号的位。较低的位结果较低的功率和较小的区域。在这项研究中,我们提出了受基因网络启发的超低功率电子电路,以证明神经元网络的计算能力。这种方法取决于我们获得的洞察力,我们获得了将神经元网络映射到分子生物系统(生物形态(Rizik等,2022)(Daniel等,2013)),然后是电子ciTomorphic(Sarpeshkar,2011年(Sarpeshkar,2011)(Hanna等,
bica*ai是一个悠久的长期研发企业,旨在创建旨在模仿人类水平人工智能的计算体系结构。最近,在其领域非常出乎意料的是,似乎是另一个竞争者 - 一种基于GPT的AI工具,旨在模仿用户友好的自然人类语言的人类计算机对话。正如其设计师所声称的那样,该设备展示了一般AI的迹象。在激动人心而快乐的接待之后,很明显,新竞争对手无法履行其预期的承诺 - 它会返回错误和误导性的回应,欺骗和虚假信息。该问题引发了一波公共反对意见,并要求停止并防止进一步的设备部署。另一方面,设备设计人员声称不完美是暂时的,很快该产品将富裕其备用的品质。不,这永远不会发生!本文的目的是说明最初基于GPT的AI工具设计的方法最初是有缺陷,错误和不合适的,因为它忽略了智能和信息专业人士的基本定义。该论文加入了普遍的意识,即对基于GPT的AI工具的不受限制和自由散布对人类社会构成威胁,类似于粗心的生物武器研究的威胁。
摘要 - 真实的时间自主系统利用多层计算框架来执行关键任务,例如感知,目标查找和路径计划。传统方法使用占用网格映射(OGM)实施感知,并通过概率信息将环境分为离散的单元。这种经典方法是完善的,并为下游过程提供了一个结构化输入,例如目标查找和路径计划算法。最近的方法利用了一种以生物学启发的数学框架,称为矢量象征体系结构(VSA),通常称为高维计算,以在高维空间中执行概率的OGM。这种方法(VSA-OGM)与尖峰神经网络提供了兼容性,将VSA-OGM定位为常规OGM的潜在神经形态替代品。但是,对于大规模集成,与已建立的OGM方法相比,评估VSA-OGM对下游任务的性能含义至关重要。本研究研究了VSA-OGM对传统的OGM方法,贝叶斯·希尔伯特·地图(BHM)的功效,基于强化学习的目标找到和路径计划框架,在受控的探索环境中,以及受到第10 f1 f1挑战启发的自主驾驶场景。我们的结果表明,VSA-OGM保持在单一和多幕科培训配置之间的可比学习绩效,同时将看不见的环境的性能提高了约47%。索引术语 - 占用网格映射,高维计算,概率学习,增强学习,脑启发的学习这些发现强调了通过BHM培训的政策网络的普遍性提高,从而增强了其在不同环境中现实部署的潜力。
由于浮点运算需要大量资源,使用传统计算范式在贝叶斯网络中实现推理(即计算后验概率)在能源、时间和空间方面效率低下。脱离传统计算系统以利用贝叶斯推理的高并行性最近引起了人们的关注,特别是在贝叶斯网络的硬件实现方面。这些努力通过利用新兴的非易失性设备,促成了从数字电路、混合信号电路到模拟电路的多种实现。已经提出了几种使用贝叶斯随机变量的随机计算架构,从类似 FPGA 的架构到交叉开关阵列等受大脑启发的架构。这篇全面的评论论文讨论了考虑不同设备、电路和架构的贝叶斯网络的不同硬件实现,以及解决现有硬件实现问题的更具未来性的概述。
本课程涵盖 6 个主题,可从以下主题中选择(但不限于): • 认知科学与人工智能的关系。 • 自然认知与人工认知之间的相似点与不同点。 • 进化、环境与个体之间的相互作用及其与人工智能的关系。 • 计算创造力(创造力的定义和指标、生成式人工智能)。 • 具身认知(中枢模式生成器、主动顺从、传感器和形态的机械优化、视觉系统)。 • 大脑中的算术和学习(神经元和突触、突触学习、自组织、基于奖励的学习、反向传播)。 • 意识(与意识相关的概念、意识理论、自然和人工系统中的意识)。 • 情感(情感概念、量化情感、情感对认知、决策和学习的贡献)。 • 自然语言(语言对认知的贡献、语义、人类物种的独特地位)。 • 模仿和从示范中学习(定位模仿、模仿在机器学习中的作用)。
春天在这里,带来了一个增长,更新和联系的季节。本赛季的节目旨在帮助您接受一年中充满活力的时间的能量。对于小孩子来说,Baby&Toddergym和Kindergym等计划提供了学习,社交和发现的培养环境,而家人可以随时随地享受户外纽带。青年可以通过艺术课程来点燃自己的创造力,例如轻松印刷,探索砖块4 Kidz Junior Robotics,或者通过我的身体,体操和运动来建立信心。青少年和成年人有机会潜入诸如开始水彩,远足和创意艺术疗法之类的兴趣。今年春天加入我们,参加激动人心的课程,户外冒险以及各个年龄段的丰富体验。当我们共同创造持久的回忆时,让这个季节成为发现和联系之一。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 2 月 5 日发布了此版本。;https://doi.org/10.1101/2025.02.05.636605 doi:bioRxiv 预印本