工程、金融和基因组学等众多行业都遇到了组合优化问题。这些问题需要通过从有限的集合中选择最佳组合或排列来优化给定的目标函数,但要受到特定限制(Smith,2010 年)。然而,由于这些问题本身就很复杂,因此有时很难通过计算解决,而且需要很长时间。研究人员已经使用了各种优化策略来解决这些问题,其中遗传算法 (GA) 脱颖而出(Goldberg,1989 年)。在问题的解空间中寻找解决方案是通过遗传算法完成的,遗传算法的灵感来自自然选择和进化的思想。它们使用选择、交叉和突变等遗传运算符在几代中开发出一个潜在解决方案群体(Holland,1975 年)。尽管 GA 能够有效地处理各种优化问题,但 Mitchell(1998 年)发现,在处理具有高维解空间的困难组合优化问题时,它们的性能可能会下降。此外,搜索过程可能会陷入局部最优,这使得找到整体最优解决方案变得更加困难(Vose,1999)。
摘要:我们实施了主要基于玻姆力学的量子建模来研究包含事件间强耦合的时间序列。与具有正常密度的时间序列相比,此类时间序列与罕见事件相关。因此,采用高斯统计数据会严重低估其罕见事件的发生。本研究的主要目标是从量子测量的角度研究罕见事件对时间序列概率密度的影响。为此,我们首先使用多重分形随机游走 (MRW) 方法对时间序列的非高斯行为进行建模。然后,我们研究了 MRW 的关键参数 λ 在时间序列导出的量子势中的作用,该参数控制非高斯性程度。我们的玻姆量子分析表明,导出的势在高频下取一些负值(其平均值),然后大幅增加,对于罕见事件,该值再次下降。因此,罕见事件可以在量子势的高频区域产生势垒,当系统横穿该势垒时,这种势垒的影响会变得突出。最后,作为将量子势应用于微观世界之外的一个例子,我们计算了标准普尔金融市场时间序列的量子势,以验证非高斯密度中罕见事件的存在,并证明与高斯情况的偏差。
摘要:准确分割 3D 磁共振成像 (3D-MRI) 中的脑肿瘤对于简化诊断和治疗过程至关重要。在基于能量函数理论的图像分割和分析方法领域,水平集方法已成为一种有效的计算方法,极大地促进了几何活动轮廓模型的发展。使用水平集技术时,减少分割误差和所需迭代次数的一个重要因素是初始轮廓点的选择,这两者在处理脑肿瘤可能具有的各种大小、形状和结构时都很重要。为了定义速度函数,传统方法仅使用图像梯度、边缘强度和区域强度。本文提出了一种受量子启发蜻蜓算法 (QDA) 影响的聚类方法,QDA 是一种受蜻蜓群居行为启发的元启发式优化器,用于准确提取初始轮廓点。所提出的模型采用量子启发计算范式来稳定开发和探索之间的权衡,从而弥补传统基于 DA 的聚类方法的任何缺点,例如收敛速度慢或陷入局部最优。首先,可以使用量子旋转门概念将代理群重新定位到可以更好地实现最优值的位置。然后,通过采用突变程序来增强群体突变并实现其多样性,使主要技术具有强大的局部搜索能力。在将颅骨与大脑分离的初步阶段之后,在 QDA 的帮助下确定肿瘤轮廓(边缘)。MRI 系列的初始轮廓将从这些提取的边缘得出。最后一步是使用水平集分割技术在所有体积段中隔离肿瘤区域。当应用于 BraTS 2019 数据集中的 3D-MRI 图像时,所提出的技术优于最先进的脑肿瘤分割方法,如所获得的结果所示。
数据不平衡,也称为数据的长尾分布,是数据驱动模型的重要挑战。在“意义上的歧义”(WSD)任务中,单词感官分布的长尾现象更为普遍,这使得很难有效地表示和识别长尾感官(LTSS)。因此,探索不严重依赖训练样本量的表示形式是对抗LTSS的重要方法。考虑到许多新状态,即叠加状态,可以从量子力学中的几个已知状态构建,因此超级态态提供了从从较小的样本量中学到的下较低表示中获得更准确的表示的可能性。受量子叠加状态的启发,提出了一种在希尔伯特空间中的表示方法,以赋予对大样本量的依赖性,从而使LTSS对抗。理论上证明了该方法的正确性,并在标准WSD评估框架下验证其有效性并获得最新性能。fur-hoverore,我们还测试了构建的LT和最新的跨语言数据集,并取得了令人鼓舞的结果。
部分遮挡图像识别 (POIR) 问题长期以来一直是人工智能面临的挑战。处理 POIR 问题的常用策略是使用非遮挡特征进行分类。不幸的是,当图像被严重遮挡时,此策略将失去效果,因为可见部分只能提供有限的信息。神经科学领域的一些研究表明,特征恢复(填充遮挡信息并称为非模态补全)对于人脑识别部分遮挡图像至关重要。然而,特征恢复通常会被 CNN 忽略,这可能是 CNN 对 POIR 问题无效的原因。受此启发,我们提出了一种新颖的受大脑启发的特征恢复网络 (BIFRNet) 来解决 POIR 问题。它模拟腹侧视觉通路来提取图像特征,并模拟背侧视觉通路来区分遮挡和可见图像区域。此外,它还使用知识模块存储对象先验知识,并使用完成模块根据可见特征和先验知识恢复遮挡特征。在合成和真实世界遮挡图像数据集上进行的深入实验表明,BIFRNet 在解决 POIR 问题方面优于现有方法。特别是对于严重遮挡的图像,BIRFRNet 大大超越其他方法,接近人脑性能。此外,受大脑启发的设计使 BIFRNet 更具可解释性。
继 Transformer 架构在自然语言领域取得成功后,类似 Transformer 的架构最近被广泛应用于符号音乐领域。然而,符号音乐和文本是两种不同的模态。符号音乐包含多种属性,既有绝对属性(例如音高),也有相对属性(例如音长)。这些相对属性塑造了人类对音乐主题的感知。然而,这些重要的相对属性在现有的符号音乐建模方法中大多被忽略,主要原因是缺乏一个具有音乐意义的嵌入空间,无法有效地表示符号音乐标记的绝对嵌入和相对嵌入。在本文中,我们提出了基于偏差调整正弦编码的符号音乐基本音乐嵌入 (FME),其中可以嵌入绝对属性和相对属性,并且明确保留基本音乐属性(例如平移不变性)。利用所提出的 FME,我们进一步提出了一种基于相对索引、音高和起始嵌入(RIPO 注意)的新型注意机制,以便充分利用音乐领域知识进行符号音乐建模。实验结果表明,我们提出的模型:利用 FME 和 RIPO 注意的 RIPO 变压器在旋律完成任务中优于最先进的变压器(即音乐变压器、线性变压器)。此外,在下游音乐生成任务中使用 RIPO 变压器,我们注意到臭名昭著的退化现象不再存在,并且 RIPO 变压器生成的音乐在主观和客观评价中都优于最先进的变压器模型生成的音乐。所提出方法的代码可以在线获取:github.com/guozixunnicolas/FundamentalMusicEmbedding
作为申请流程的一部分,您可以向 CSIRO 或 NSF 提供个人信息。通过参与或提交该计划的申请,您同意将您的个人信息披露给海外,并承认 CSIRO 不再需要遵守与该个人信息相关的澳大利亚隐私原则 8。您必须确保在申请过程中提供个人信息的任何其他人也知晓并同意收集、使用和披露他们自己的个人信息。
摘要:在本文中,我们提出了一个创新的联邦学习启发的进化框架。其主要新颖性是,这是第一次使用进化算法直接执行联合学习活动。进一步的新颖性存在于以下事实,即与文献中的其他联合学习框架不同,我们的人可以同时处理机器学习中的两个相关问题,即解决方案的数据隐私和解释性。我们的框架由主/从方法组成,其中每个从包含本地数据,保护明智的私人数据,并利用进化算法来生成预测模型。主人通过奴隶分享了每个从属上出现的本地学到的模型。共享这些本地模型会导致全球模型。由于数据隐私和可解释性在医学领域非常重要,因此通过利用语法进化算法来预测算法以预测糖尿病患者的未来葡萄糖值。通过将所提出的框架与不发生本地模型交换的另一个框架进行比较,通过将所提出的框架进行比较,可以通过实验评估这种知识共享过程的有效性。结果表明,所提出的方法的性能更好,并证明了其共享过程的有效性,用于出现在个人糖尿病管理的本地模型,可作为有效的全球模型。此外,统计分析揭示了模型交换相对于未发生交换的情况的统计优势。考虑到不参与学习过程的其他受试者,我们的框架发现的模型比没有知识共享的模型显示出更高的概括能力:知识共享提供的改进等于精度约为3.03%,召回率为1.56%,f 1的3.17%,对于准确性,f 1.3.17%。
电网正越来越多地与可再生能源相结合,而可再生能源的产出本质上大多是波动的。负载需求也日益增加,这主要是由于人们对电动汽车和其他自动化设备的兴趣日益浓厚。能源管理系统有助于维持可用发电量和负载需求之间的平衡,从而优化能源使用。它还有助于减少峰值负荷、温室气体排放和运营成本。能源管理可以在不同的层面上进行,对于实现智能家居、智能建筑甚至智能电网至关重要。设计能源管理系统时考虑的不同目标是减少排放、能源成本、运营成本、峰值需求等。许多传统和混合的自然启发算法用于优化这些不同的目标。本文旨在概述用于优化家庭、建筑和微电网中能源管理系统的各种自然启发算法。