关于研讨会“绿色可再生电子技术用于环境培育和可持续性”全国研讨会 (GREENS) 旨在解决在技术快速进步和环境挑战的背景下对电子行业可持续实践的迫切需求。它将联合研究人员、行业专家、政策制定者和教育工作者,合作探索绿色电子领域的进步。关键主题包括环保材料与制造、能源效率、可再生能源整合、生命周期评估和电子垃圾管理。此外,它还将研究支持可持续实践的政策和监管框架,并重点关注环保创新的激励措施。通过促进合作,GREENS 寻求推动向可持续电子产品的转变,为参与者提供实现电子行业环境目标所需实际步骤的见解。通过讨论政策、案例研究和创新解决方案,研讨会旨在激发采取切实可行的步骤实现对环境负责的电子产品,并促进合作以实现可持续的未来。
➔了解我们在特权和压迫体系中的立场,并不学习保护这些系统的习惯和实践,这对我们所有人来说都是终生工作的,毫无例外的是团结和相互关系的真实关系,这是我们不可能避免或超越这些不平衡的工具的,这些态度始终是避免了那些始终建立的,这些习惯是在建立不平等的,即使他们的工作变得无关紧要,却是构成无价值的工具,即有效地构成了一个不可思议的工具,却是有效的,却是有效的,却是有效的,却是有效的,却是有效的,却是有效的,这些习惯是努力的,这些习惯是努力的,这些习惯是构成了一个无效的工具,这些习惯是在努力,而却是有效的。谦卑和问责制➔内部进入沉默,调解,内在的智慧和深厚的喜悦与社会变革的外在工作
密码学长期以来一直是确保通信和保护隐私的工具。但是,其作用超出了技术实施,以涵盖重要的政治和道德方面。由埃里克·休斯(Eric Hughes)于1993年撰写的Cypherpunk宣言[7],强调了加密和拥护者的继承性政治本质,以此作为确保隐私和个人自由的一种手段。同样,菲利普·罗加威(Phillip Rogaway)的[10]工作强调了密码学家的道德责任,尤其是在大规模监视和社会影响的背景下。从根本上讲,密码学可以看作是“武装”群众保护自己的群众的一种手段。1993年的宣言和罗加威的作品强调了两个要点:不信任政府和保护集体数据。这种观点在戴维·乔姆(David Chaum)的思想中得到了回应,他提出了一个依靠强大加密来保护隐私的交易模型。尽管这些想法首次阐明了40多年,但保护社会免受信息滥用的梦想仍然很遥远。Chaum警告:
Callaway,Heather M。; Hastie,Kathryn M。; Schendel,Sharon L。;李,高阳; Yu,小;谢克,杰里米;巴克,蒂拉; Hui,肖恩;贝格,丹; Troup,Camille;丹尼森(S. Moses);李,坎; Alpert,Michael d。;贝利,查尔斯C。沙龙的苯甲诺; Bonnevier,Jody L。; Chen,Jin-Qiu;陈,魅力; Cho,Hyeseon; Crompton,Peter d。;文森特·杜森(Dussupt); Entzminger,Kevin c。; Ezzyat,Yassine;弗莱明,乔纳森·K。 Geukens,尼克;吉尔伯特(Amy)旺朱恩(Guan);汉,小吉安;哈维,克里斯托弗·J(Christopher J。); Hatler,Julia M。;豪伊,布莱恩; hu,chao;黄,艾隆;伊姆布雷希特(Maya);金,艾森;卡马奇,尼克;吉特尼,格拉迪斯;克林格,马克; Kolls,Jay K。;克雷布斯(Krebs),雪莉(Shelly J。);李,刺;罗,菲扬;马鲁山,托西亚基; Meehl,Michael A。; Mendez-Rivera,Letzibeth;穆萨,安德里亚; Okumura,C.J。 ;鲁宾,本杰明E.R. ;萨托(Aaron K);沉,迈耶;辛格,阿尼鲁德;歌曲,Shuyi;谭,约书亚; Trimarchi,Jeffrey M。; dhruvkumar p。upadhyay;王,耶明; lei,lei; Yuan,Tom Z。;尤斯科(Yusko),埃里克(Erik);彼得斯,伯乔恩;佐治亚州托马拉斯; Saphire,Erica Ollmann 2023Callaway,Heather M。; Hastie,Kathryn M。; Schendel,Sharon L。;李,高阳; Yu,小;谢克,杰里米;巴克,蒂拉; Hui,肖恩;贝格,丹; Troup,Camille;丹尼森(S. Moses);李,坎; Alpert,Michael d。;贝利,查尔斯C。沙龙的苯甲诺; Bonnevier,Jody L。; Chen,Jin-Qiu;陈,魅力; Cho,Hyeseon; Crompton,Peter d。;文森特·杜森(Dussupt); Entzminger,Kevin c。; Ezzyat,Yassine;弗莱明,乔纳森·K。 Geukens,尼克;吉尔伯特(Amy)旺朱恩(Guan);汉,小吉安;哈维,克里斯托弗·J(Christopher J。); Hatler,Julia M。;豪伊,布莱恩; hu,chao;黄,艾隆;伊姆布雷希特(Maya);金,艾森;卡马奇,尼克;吉特尼,格拉迪斯;克林格,马克; Kolls,Jay K。;克雷布斯(Krebs),雪莉(Shelly J。);李,刺;罗,菲扬;马鲁山,托西亚基; Meehl,Michael A。; Mendez-Rivera,Letzibeth;穆萨,安德里亚; Okumura,C.J。;鲁宾,本杰明E.R.;萨托(Aaron K);沉,迈耶;辛格,阿尼鲁德;歌曲,Shuyi;谭,约书亚; Trimarchi,Jeffrey M。; dhruvkumar p。upadhyay;王,耶明; lei,lei; Yuan,Tom Z。;尤斯科(Yusko),埃里克(Erik);彼得斯,伯乔恩;佐治亚州托马拉斯; Saphire,Erica Ollmann 2023
什么是 AD 科学指数 (Alper-Doger 科学指数)?AD 科学指数由 Murat Alper 教授和 Cihan Döğer 副教授于 2021 年开发,是一个独立的国际排名系统,用于评估科学家和机构的学术影响力。AD 科学指数分析了 221 个国家/地区 13 个主要学术领域和 197 个学科的 24,462 个机构和 2,393,106 名科学家。本研究基于从 Google Scholar 获得的数据并经过多层数据过滤,对科学家的生产力系数进行了全面评估,同时考虑了总的和过去六年的 h 指数、i10 指数得分和引用次数。通过学术排名、分析和比较结果,AD 科学指数提供了大量数据,有助于监测、评估和制定政策,从而提高个人学者和机构的科学贡献。
什么是 AD 科学指数 (Alper-Doger 科学指数)?AD 科学指数由 Murat Alper 教授和 Cihan Döğer 副教授于 2021 年开发,是一个独立的国际排名系统,用于评估科学家和机构的学术影响力。AD 科学指数分析了 221 个国家/地区 13 个主要学术领域和 197 个学科的 24,462 个机构和 2,393,106 名科学家。本研究基于从 Google Scholar 获得的数据并经过多层数据过滤,对科学家的生产力系数进行了全面评估,同时考虑了总的和过去六年的 h 指数、i10 指数得分和引用次数。通过学术排名、分析和比较结果,AD 科学指数提供了大量数据,有助于监测、评估和制定政策,从而提高个人学者和机构的科学贡献。
什么是AD科学索引(Alper-Doger科学指数)?由穆拉特·阿尔珀(Murat Alper and Assoc)博士于2021年开发。CihanDöğer博士,AD科学指数是一个独立且国际排名的系统,可对科学家和机构的学术表现进行多维评估。 该系统是原始的学术排名,详细的分析和比较结果,是指导旨在提高科学贡献和个人研究人员和机构的科学贡献和生产力的重要资源。 AD科学索引分析了来自13个主要学术领域和197个学科的2.444.182科学家和24.482个机构的数据,涵盖了221个国家,使其成为其最广泛的基于样本的研究之一。 利用来自Google Scholar并经过严格多阶段过滤过程的数据,该系统根据总和近六年的H-索引,i10-索引和引用数量评估了填充物,从而提供了对学术生产力的全面评估。CihanDöğer博士,AD科学指数是一个独立且国际排名的系统,可对科学家和机构的学术表现进行多维评估。该系统是原始的学术排名,详细的分析和比较结果,是指导旨在提高科学贡献和个人研究人员和机构的科学贡献和生产力的重要资源。AD科学索引分析了来自13个主要学术领域和197个学科的2.444.182科学家和24.482个机构的数据,涵盖了221个国家,使其成为其最广泛的基于样本的研究之一。利用来自Google Scholar并经过严格多阶段过滤过程的数据,该系统根据总和近六年的H-索引,i10-索引和引用数量评估了填充物,从而提供了对学术生产力的全面评估。
3.3. 限制。客户不得让第三方或除客户员工、学生、员工讲师和员工研究人员(其职责要求访问或使用)以外的任何人访问或使用许可材料。在使用之前,客户应确保所有此类学生、员工讲师和员工研究人员均已获悉本条款中有关许可材料的条件、限制和限制,并且客户应对此类用户的行为或疏忽向 Cadence 负责,如同它们是客户的行为或疏忽一样。客户不得对软件或设计元素或任何软件或设计元素的输出进行任何基准测试(这意味着对许可材料与竞争工具产品进行任何形式的竞争分析),也不允许任何第三方这样做。客户应确保通过使用许可材料生成或验证的任何设计和输出均不被客户或任何第三方许可、出售、转让或以其他方式进行商业利用,也不被披露或转让给任何第三方(本第 3.3 条明确允许的除外),也不被用于“使用”定义未明确允许的任何其他目的。”尽管有上述规定,客户可以在以下情况下披露通过使用许可材料生成或验证的设计和输出:
摘要:近年来,多元同步指数(MSI)算法作为一种新的频率检测方法,在基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)研究中受到越来越多的关注。然而,MSI算法难以充分利用脑电图(EEG)中与SSVEP相关的谐波分量,限制了MSI算法在BCI系统中的应用。在本文中,我们提出了一种新的滤波器组驱动的MSI算法(FBMSI)来克服该限制并进一步提高SSVEP识别的准确性。我们通过开发一个6命令SSVEP-NAO机器人系统并进行大量实验分析来评估FBMSI方法的有效性。首先使用从9名受试者采集的EEG进行离线实验研究,以研究不同参数对模型性能的影响。离线结果表明,所提出的方法取得了稳定的改进效果。我们进一步对六名受试者进行了在线实验,以评估所开发的 FBMSI 算法在实时 BCI 应用中的效果。在线实验结果表明,FBMSI 算法使用仅一秒的数据长度即可获得 83.56% 的平均准确率,比标准 MSI 算法高出 12.26%。这些广泛的实验结果证实了 FBMSI 算法在 SSVEP 识别中的有效性,并展示了其在改进的 BCI 系统开发中的潜在应用。
镍基高温合金一直在满足燃气轮机对高温材料的需求,以提高工作温度 (T) 并实现更高的效率 [1]。然而,要进一步突破燃气轮机在 T > 1600 C 下的运行极限,就需要发现和开发除相当昂贵的镍基高温合金之外的新型合金。最近对合金探索的兴趣促使人们偏离传统的合金化策略,探索相图中心,从而产生了一种新的合金,即多主元合金 (MPEA) [2]。与沉淀强化合金相比,MPEA 具有单相/双相固溶体(由多种组成元素的比例相当导致的相对“更高”的混合熵驱动),这些固溶体在较高温度下稳定,即使在升高的 T 下也能保持优异的机械、腐蚀和热性能 [2e18]。 MPEA 可用的成分范围非常广泛,而且人们对使用计算和机器学习技术加速合金发现的兴趣日益浓厚,这促进了具有目标特性的 MPEA 的高通量设计研究[8、9、11、12、15、17、19 e 22]。尽管如此,在实验室规模上对这些成分的预测相 / 特性的验证通常仅限于电弧熔炼 [23、24]、机械合金化、放电等离子烧结 [25] 和薄膜沉积 [26]。基于激光沉积的增材制造 (AM) 技术的进步为高通量合成 MPEA 提供了机会,它提高了可扩展性,可以将合金和组件设计结合起来,以获得应用驱动的材料特性 [27 e 36]。然而,AM 的优势有时会被制造方面的挑战所取代,包括材料中的孔隙率
