摘要:无障碍数字乐器 (ADMI) 越来越受到科学界的关注,尤其是在声音和音乐计算以及人机交互领域。过去,Netytar 就是其中之一。Netytar 是一种通过眼睛操作的软件 ADMI,使用眼动仪和附加开关或传感器(例如呼吸传感器)。该乐器专为四肢瘫痪用户设计:它属于凝视操作乐器领域,并且已通过测试证明其有效且功能齐全。尽管市场和文献中还有其他几种凝视操作的 ADMI,但尚未提出使用它们学习音乐的正式方法。本研究介绍了一种基于一组练习的简单学习方法。这对于使用 Netytar 进行音乐表演很有用,但它也可能适用于学习其他类似的乐器。为了改进,对练习进行了说明、讨论和解释。介绍了一种简单的乐谱。在一个学习周期结束时,用户应该能够演奏简单的旋律,并有学习其他新旋律的基础。未来,该方法将在目标用户身上进行测试。
根据环境质量委员会 (CEQ) 为执行《国家环境政策法》(NEPA)、美国法典第 42 篇第 4321 节、《联邦法规》(CFR) 第 40 篇第 1500-1508 节以及空军部 (DAF) 环境影响分析流程第 32 CFR 第 989 节的程序规定而制定的规定,DAF 作为牵头机构,已编制了一份环境评估 (EA),分析了为埃格林空军基地 (AFB) 建立军事训练路线 (MTR) - 仪表路线 (IR) 以测试新武器系统所产生的影响。目的和需求(环境评估 [EA] 第 (§) 1.3 节,第 1-2 至 1-5 页):拟议行动的目的是让埃格林空军基地的第 96 试验联队 (96 TW) 在全天候、远程、低空环境中测试新型武器系统及其组件,该环境从水到地的过渡终止于受限制空域下的陆地靶场。需要采取拟议行动是因为新型或第五代武器系统需要在低空进行测试,并能够在陆地影响区(例如埃格林陆地试验场之一)终止。
已完成两项研究(2020 年第三季度): 审查可用于小型卫星和商业空间的光学技术(光学、探测器、校准/验证) 推导仪器和非商业任务概念(操作、科学、检测应用) 定义了几个有前景的概念,需要进一步的系统和原型设计工作
a.MAJCOM TERPS 办公室发起或批准所有设计、修改或取消国内民用机场空军仪表程序的请求,并将请求转发给相应的地区 FPO(参见附录 1,飞行程序办公室)。设计或修改程序的请求必须包含所需程序的一般描述和程序的粗略草图,以及预计参与协调过程的个人的电话号码和姓名。在进行初步空域分析并与地区空中交通、机场和航路设施部门以及机场经理 1 赞助商/所有者协调后,FPO 将请求转发给相应的 NFPO 分支机构以提供技术开发服务。开发部门与 MAJCOM TERPS 办公室(参见附录 2,美国空军地址列表)和地区 FPO 进行协调。
本文探讨了自由区在实现这些不同目标方面的效力。换句话说,它们能否成为发展政策的持久焦点?为了回答这个问题,本文的第一部分描述了自由区发展的最新趋势,这些趋势不仅以就业人数的快速增长为特征,而且以地理和行业的高度集中为特征。第二部分从理论角度和对一些案例的实证研究的角度分析了此类区域的就业创造和经济增长潜力。第三部分评估了建立自由区的法规与各种多边协议之间的兼容性,同时提出了一些关于此类区域未来发展的想法。
2 理论分析 3 2.1 光学像差....................................................................................................................................................................3 2.1.1 球面像差....................................................................................................................................................................3 2.1.2 像散....................................................................................................................................................................................3 2.1.2 彗形像差....................................................................................................................................................................4 2.1.3 彗形像差....................................................................................................................................................................4 2.1.3 彗形像差.................................................................................................................................................................... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................21 2.2 与 OPIC 的相关性 .................................................................................................................................................................................22 2.2.1 镜头和传感器像差 .................................................................................................................................................................................22 2.2.2 轨迹动力学效应 .................................................................................................................................................................................24
我们构思并构建一个位点原位高压时间分辨的超快光谱仪器,可在高压条件下促进超快泵 - 探针动力学测量。我们将超快泵 - 探针光谱系统与钻石砧室(DAC)系统集成在一起。显着,DAC和样品均固定在光路中,没有运动和在整个超快光谱实验中旋转,包括调整和校准压力。该仪器因此避免了由于样品运动或旋转而引起的插入伪像,从而实现了精确的高压超快泵 - 探针动力学研究。作为一个例子,我们比较了现场条件与现场条件对SR 2 IRO 4在0–44.5 GPA高压下的SR 2 IRO 4的超快动力学的影响。我们的数据和分析表明,使用现场原位布局可大大降低常规可能的伪像。我们的工作有助于高压超快科学调查发展为有希望的新领域,该领域可以探索高压制度中非平衡激发量子状态。
与总气溶胶(包括精细和粗糙)相对于整个气溶胶的世界图。沙漠和海洋以蓝色清楚地显示出来,因为沙漠灰尘和海盐是更粗的气雾剂。具有大量行业和流量的地区(例如印度)和大火的地区(例如中非和西伯利亚)是红色的,因为这些过程会产生更细的颗粒。该地图显示了2024年3月至1224年12月的地球上每个位置的平均值。贷方:SRON
14 Zeta电位使用电压来测量样品的电泳迁移率。这包括pH滴定测量值15材料的化学兼容性和由于紧密的电极间距而产生低压的强电压的能力所必需的,16样品浓度可以对散射水平产生影响,而扩散17过滤器降低到20 nm,应考虑使用非级别的材料时使用非溶液的化学兼容性,
摘要 小型卫星大地测量参考仪器应答器 (GRITSS) 引入了一种新颖的大地测量飞行时间观测量,以解决 GNSS 和 VLBI 地面站天线之间的站点连接偏差误差问题,从而改进了国际地球参考框架 (ITRF) 的实现。通过强制 GNSS 和 VLBI 观测之间的相互和同时光谱兼容性,GRITSS 支持在地面站天线之间应用技术内干涉处理。通过这种方式,GNSS 和 VLBI 观测可以在最基本的层面上联系在一起;它们各自的电参考点(例如相位中心和轴的交点)。GRITSS 是由马萨诸塞大学洛厄尔分校和美国宇航局戈达德太空飞行中心开发的,它实现了实现这种新型延迟观测量所需的技术。并且,通过与 ISISpace 签订的合同,我们的仪器将在低地球轨道上的立方体卫星上进行演示。在我们的文章中,我们将回顾 ITRF 对太空地球科学任务的重要性、GRITSS 可观测数据如何改进 ITRF,以及 GRITSS 技术飞行演示的最新计划。