5.1.10 三种模型 (OFAT、FCD 和带二次项的 FCD) 的比较 ............................................................................................................................. 128 5.1.11 逆回归过程 ............................................................................................................. 129 5.1.12 逆回归过程 ............................................................................................................. 130
致谢 作者谨感谢爱荷华州艾姆斯市爱荷华州立大学研究团队的努力,他们是 Terry Wipf、Brent Phares、Nick Burdine、Doug Wood 和 Byung-Ik Chang。爱荷华州立大学团队负责在监测期间安装和维护 Clear Lake 站点的数据采集系统。该项目的现场仪表和测试部分由利哈伊大学大型结构系统先进技术中心 (ATLSS) 基础设施监测项目的研究人员执行。作者作为该团队的成员参与了该项目的这一阶段。Carl Bowman(仪器技术员)和 Margaret Warpinski(利哈伊大学结构工程研究生)在该领域的努力对项目的成功至关重要。所有数据解释和报告准备均由作者作为爱荷华州交通部顾问进行。本报告中表达的所有观点均为作者的观点,并不一定代表利哈伊大学的观点。
运输研究委员会 2008 执行委员会官员 主席:Debra L. Miller,堪萨斯州运输部秘书,托皮卡 副主席:Adib K. Kanafani,加州大学伯克利分校土木工程 Cahill 教授 NRC 监督分部主席:C. Michael Walton,德克萨斯大学奥斯汀分校 Ernest H. Cockrell 工程百年讲席教授 执行董事:Robert E. Skinner, Jr.,运输研究委员会 运输研究委员会 2008–2009 技术活动委员会 主席:Robert C. Johns,明尼苏达大学明尼阿波利斯分校交通研究中心主任 技术活动执行董事:Mark R. Norman,运输研究委员会 Paul H. Bingham,Global Insight, Inc. 负责人,华盛顿特区,货运系统集团主席 Shelly R. Brown,Shelly Brown Associates 负责人,华盛顿州西雅图法律资源组主席 Cindy J. Burbank ,国家规划和环境实践负责人,PB,华盛顿特区,政策和组织组主席 James M. Crites ,达拉斯-沃斯堡国际机场运营执行副总裁,德克萨斯州,航空组主席 Leanna Depue ,密苏里州交通部公路安全部主任,杰斐逊城,系统用户组主席 Arlene L. Dietz ,A&C Dietz and Associates,LLC,俄勒冈州塞勒姆,海事组主席 Robert M. Dorer ,地面交通项目办公室副主任,沃尔普国家交通系统中心,研究与创新技术管理局,马萨诸塞州剑桥,铁路组主席 Karla H. Karash ,TranSystems Corporation 副总裁,马萨诸塞州梅德福,公共交通组主席 Mary Lou Ralls ,Ralls Newman,LLC 负责人,德克萨斯州奥斯汀,设计和施工组主席 Katherine F. Turnbull ,德克萨斯交通研究所副主任,德克萨斯农工大学,大学城,规划和环境组主席 Daniel S. Turner ,阿拉巴马大学教授、阿拉巴马大学交通中心主任、塔斯卡卢萨市运营和保护小组主席
六.六.六.六.六.机械连接 1A 1A 1A 1A 1A 不带适配器,9/16” - 18 UNF(仅限阀体尺寸 0 和 1) 1B 1B 1B 1B 1B 1/4” 管压缩 1C 1C 1C 1C 1C 1/ 8” 管压缩 1D 1D 1D 1D 1D 3/8” 管压缩 1E 1E 1E 1E 1E 1/4” VCR 1F 1F 1F 1F 1F 1/4” VCO 1G 1G 1G 1G 1G 1/4” NPT 1H 1H 1H 1H 1H 6mm 管压缩 1J 1J 1J 1J 1J 10mm 管压缩 1L 1L 1L 1L 1L 3/8”-1/2” VCR 1M 1M 1M 1M 1M 3/8”-1/2” VCO 1P 1P 1P 1P 1P 1P 1/2” 管压缩 1T 1T 1T 1T 1T 1/4” RC (BSP) 1Y 1Y 1Y 1Y 1Y 3mm 管压缩 B1 B1 B1 B1 B1 1/4” 管压缩,带过滤器 C1 C1 C1 C1 C1 1/8” 管压缩,带过滤器 D1 D1 D1 D1 D1 3/8” 管压缩,带过滤器 E1 E1 E1 E1 E1 1/4” VCR 带过滤器 F1 F1 F1 F1 F1 1/4” VCO 带过滤器 G1 G1 G1 G1 G1 1/4” NPT 带过滤器 H1 H1 H1 H1 H1 6mm 管压缩带过滤器J1 J1 J1 J1 J1 10mm 管压缩带过滤器 L1 L1 L1 L1 L1 3/8”-1/2” VCR 带过滤器 M1 M1 M1 M1 M1 3/8”-1/2” VCO 带过滤器 P1 P1 P1 P1 P1 1/2” 管压缩,带过滤器 T1 T1 T1 T1 T1 1/4” RC (BSP),带过滤器 Y1 Y1 Y1 Y1 Y1 3mm 管压缩,带过滤器
摘要 本报告总结了八个仪器和控制 (I&C) 技术重点领域的进展,这些领域可应用于核电站数字化升级和新工厂。这是 NRC 赞助的新兴技术研究中一系列计划更新报告中的第二份(第一份是 NUREG/CR-6812)。本研究旨在提供“预警”信息,使 NRC 能够更好地准备在这些领域做出监管决策。本研究更新重点关注传感器(例如温度、中子和热功率传感器)的进展及其潜在的监管影响。本报告中研究结果和结论的重点如下:1 碳化硅中子探测器已度过开发阶段。但无法充分评估长期性能(退化信息)、漂移等重要信息。虽然该探测器具有广泛的动态范围(有可能取代目前的启动、中间和功率范围监测器),但重要的是,基于该技术的组合中子监测器不仅要表现出从启动到 100% 功率的全动态范围,而且还要证明在 100% 功率下也能长期保持性能。应继续监测这些探测器的开发进展,因为如果这些探测器也符合上述标准,它们将有可能提供更好的操作和安全裕度。
深入了解胶体组装的基本机制为缩放高度专业化的基于粒子的生产提供了基础(即纳米颗粒,颗粒等)材料。对地球上的胶体组装技术进行了广泛的研究,但是对理事物理学的许多基本见解都被引力掩盖,这严重限制了对这些三维结构的高影响力研究。因此,对ISS的研究将无疑为发现胶体组装的基本物理机制提供了重要的优势,并具有对如何在地球上最佳组装的批判性见解。 此外,ISS微重力环境可以考虑独特的实验,例如随时间的3D胶体形态的演变,也称为“ 4D”研究。 这种胶体组件是场驱动的,这意味着受控良好的外力(流体动力,光学,热,电气,磁性,声学等))因此,对ISS的研究将无疑为发现胶体组装的基本物理机制提供了重要的优势,并具有对如何在地球上最佳组装的批判性见解。此外,ISS微重力环境可以考虑独特的实验,例如随时间的3D胶体形态的演变,也称为“ 4D”研究。这种胶体组件是场驱动的,这意味着受控良好的外力(流体动力,光学,热,电气,磁性,声学等)需要。
p et Imaging使用放射性对比剂来诊断和治疗各种医疗状况。PET成像提供了有关人体内疾病细胞和分子途径的独特信息,这与G-木霉和SPECT提供的疾病相辅相成。PET也经常用于小动物分子成像研究(1)。一项宠物研究始于放射性示踪剂的给药。PET数据获取是基于对数百万对相对指向的511射光子光子的一致检测,每种对the剂(tracer radionuclide标签的衰减产物)的灭绝产生的每种都会引起。使用高原子数,高密度和厚的辐射探测器检测到所得的歼灭光子通常排列在圆柱几何形状中(例如,图。1)。
为什么要参加 FMGM?这是我第一次参加,当时我以为“我可以阅读会议论文集”,所以没什么理由去。错了!对我来说,最令人印象深刻的印象是:• 意识到在北美我们倾向于持有一种狭隘的观点。有很多设备和解决问题的方法,我们在北美看不到。瑞士、德国和意大利的技术尤其引人注目。• 意识到在北美,大多数制造商的角色在仪器运送到用户手中时就结束了,而在许多其他国家,制造商还提供主要的现场服务。我认为北美的这种分界线与避免与客户竞争以及避免专业责任有关。然而,在我看来,最终用户(需要良好数据的人)有时可能更需要高技能的制造商/现场服务组织提供服务,例如意大利的 ISMES、瑞士的 Solexperts 和德国的 Interfels。