值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
为什么要参加 FMGM?这是我第一次参加,当时我以为“我可以阅读会议论文集”,所以没什么理由去。错了!对我来说,最令人印象深刻的印象是:• 意识到在北美我们倾向于持有一种狭隘的观点。有很多设备和解决问题的方法,我们在北美看不到。瑞士、德国和意大利的技术尤其引人注目。• 意识到在北美,大多数制造商的角色在仪器运送到用户手中时就结束了,而在许多其他国家,制造商还提供主要的现场服务。我认为北美的这种分界线与避免与客户竞争以及避免专业责任有关。然而,在我看来,最终用户(需要良好数据的人)有时可能更需要高技能的制造商/现场服务组织提供服务,例如意大利的 ISMES、瑞士的 Solexperts 和德国的 Interfels。
=> 将西方工程 I&C 学说与作为初始 WER 学说的基本 WER I&C 原则进行比较,鼓励东西方双方进行讨论和相互理解,并有助于确定所选的方案;=> 该学说有助于建立 I&C 系统的概念、基本和详细设计;它在项目的第一步中起着根本性的作用,这对于正确定义以下步骤是绝对必要的;=> 它有助于解释新的发展,同时提供限制其设计过度的框架;=> 它有助于在升级项目期间提供步骤层次结构和解决方案稳定性;=> 将所选的升级原则和选项集成到全局单元 I&C 学说中,应能保证整个系统的一致性。
其中一些自建造以来就经过了修改、升级和翻新,以满足更高中子通量的要求。然而,其中一些老化的研究反应堆仍在使用其原有的仪表和控制系统 (I&C) 运行,这些系统对于反应堆安全非常重要,可以防止异常事件发生以及涉及启动、关闭和功率调节的反应堆控制。磨损和过时的 I&C 系统会导致运行问题以及难以获得替换零件。此外,要满足核监管机构规定的严格安全条件,需要对研究反应堆 I&C 系统进行现代化改造,并将额外的仪表单元集成到反应堆中。过去几年,I&C 系统的技术进步迅速,研究反应堆界应该采用这项技术。随着微处理器和个人计算机的使用增加,对高水平复杂度和可靠性的要求也随之提高,以满足各种操作和安全要求。这要求研究反应堆运营商在规划如何改进老化研究反应堆的仪表和控制时,以及在建造新设施时做出适当选择时,必须仔细考虑。为了澄清这些问题,并为反应堆运营商提供一些关于研究反应堆仪表和控制系统的最新技术和未来趋势的指导,1995 年 12 月 4 日至 8 日在斯洛文尼亚卢布尔雅那举行了研究反应堆仪表和控制技术和趋势技术委员会会议。
3 测量过程中的误差 32 3.1 简介 32 3.2 系统误差的来源 33 3.2.1 测量引起的系统干扰 33 3.2.2 环境输入引起的误差 37 3.2.3 仪器部件的磨损 38 3.2.4 连接导线 38 3.3 减少系统误差 39 3.3.1 精心的仪器设计 39 3.3.2 反向输入方法 39 3.3.3 高增益反馈 39 3.3.4 校准 41 3.3.5 输出读数的手动校正 42 3.3.6 智能仪器 42 3.4 系统误差的量化 42 3.5 随机误差 42 3.5.1 受随机误差影响的测量的统计分析 43 3.5.2 图形数据分析技术 – 频率分布 46 3.6 测量系统误差的汇总 56 3.6.1 系统误差和随机误差的综合影响 56 3.6.2 测量系统各个组成部分的误差汇总 56 3.6.3 组合多个测量值时的总误差 59 3.7 自测问题 60 参考文献和进一步阅读 63
METEK Dixson 的全数字 NGI 多路复用仪表系统采用了最新的技术和制造工艺。该系统可靠且可扩展,可用于任何车辆或固定位置应用。高度模块化的 NGI 系统在设计时充分考虑了未来的适应性。指针、刻度盘和边框设计允许简单且廉价地进行外观更改或更新。所有仪表共用的内部结构和零件可最大程度降低成本,而菊花链电缆连接与浅深度外壳相结合,可最大程度地减少仪表板后的空间要求。仪表和模块连接到车速表中的系统控制单元并由其控制,以最大程度地减少车辆数据总线的负载。仪表具有光导管、车辆使用寿命 LED 背光、尖端到轮毂照明指针、270° 指针偏转和易于阅读的图形。指针由精密步进电机驱动,这种电机长期以来以耐用性和准确性而闻名。每个仪表中的红色警告 LED 减少了专用指示器的数量。明亮的橙色指针和黑底白字图形是标准配置;其他方案也可用。英制、北美自由贸易协定和公制刻度,带或不带子刻度均可根据要求提供。仪表安装在标准的 2 英寸、3 英寸和 5 英寸切口中。NGI 系统具有自校准和自测试功能,完全免维护。
J.黑斯廷斯等人。应用。物理。莱特。 89、184109(2006)。 P. Musumeci 等人,应用物理快报 97, 063502 (2010)。 R. Li 等人,Rev. Sci。仪器。 81, 036110 (2010)。 Y. Murooka 等人,应用。物理。莱特。 98、251903(2011)。 P. Zhu 等人,新物理学杂志。 17、063004(2015)。 S.Weathersby 等人,Rev.Sci。仪器。 86, 073702 (2015)。 S. Manz 等人,法拉第讨论。 177, 467 (2015) D.Filippetto 和 H. Qian, J. Atom. and Mol. And Opt. Phys. 49, (2016) F. Qi 等人, Phys. Rev. Lett. 124, 134803 (2020)。HW Kim 等人, Nature photonics 14, 245 (2020)
核电站的仪器仪表和控制:新兴技术 更新日期:2008 年 12 月 编写者:K. Korsah、a D. E. Holcomb、a M. D. Muhlheim、a J.A. Mullens、a A. Loebl、a M. Bobrek、a M. K. Howlader、a S. M. Killough、a M. R. Moore、a P. D. Ewing、a M. Sharpe、b A.A. Shourbaji、a S. M. Cetiner、a T. L. Wilson, Jr、a 和 R. A. Kisner。a a 橡树岭国家实验室 1 Bethel Valley Road Oak Ridge, TN 37831 由 UT-Battelle, LLC 为美国能源部管理,合同编号为 DE-AC05-00OR22725 b 田纳西大学 315 Pasqua 工程大楼 诺克斯维尔,TN,37996-2300 NRC 项目经理:Khoi Nguyen Tekia Govan 为工程部准备 核管理研究办公室 美国核管理委员会 华盛顿特区 20555-0001 NRC 工作代码 Y6962