• Dominion Energy Virginia 正在将短路比与相互作用因子 (SCRIF) 的伪实时计算构建到自动化运营规划工具应用程序中,该应用程序每 10 分钟检索一次能源管理系统 (EMS) 快照。它与 EMS 是分开的,但它使用节点断路器实时模型。目标是了解 SCRIF 是否实际上是预测控制器/逆变器不稳定问题的有效指标,这些问题在实时同步相量数据中已经出现。如果是,SCRIF 研究将在停电前纳入运营规划时间范围。目前,Dominion Energy Virginia 并未系统地开展 EMT 研究,但它会根据需要进行研究,并正在探索运营和规划范围内对 EMT 研究的进一步要求。功率流和相量域动态研究都是作为设施互连过程的一部分进行的。
本论文研究了不同的用户界面 (UI) 设计如何影响用户对生成式人工智能 (AI) 工具的信任。我们进行了一项实验,采用绿野仙踪方法测试了三种具有不同 ChatGPT UI 变体的工具的信任级别。来自不同学科的九名志愿大学生参加了实验。我们使用问卷来评估参与者在与每种工具交互后以及与所有工具交互后的信任感知。结果表明,参与者之间的信任水平受到生成式 AI 的 UI 设计的影响,尤其是头像设计和文本字体。尽管共享相同的文本源,但大多数参与者认为 ChatGPT 与其他工具相比最值得信赖。结果还强调了对话界面在与生成式 AI 系统建立信任方面的重要性,参与者表示更喜欢促进自然和引人入胜的交互的界面。该研究强调了 UI 对信任的重大影响,旨在鼓励对生成式 AI 更加谨慎的信任。
摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
■ 鼓励来自代表性不足的人群(包括不同种族和民族群体和女性)以及资源不足的少数民族服务机构 (MSI) 的研究人员使用尖端、低成本的数据科学资源
能源管理是适用于智能建筑物(SBS)的微电网(MGS)的主要挑战之一。因此,更多的研究是必不可少的,要考虑建模和操作方面,以利用系统的即将到来的不同应用程序。本文介绍了一种新型的能源管理建筑模型,该模型基于完整的监督控制和数据获取(SCADA)系统的职责,其中包括MG实验室(LAB)测试床,该模型在罗马萨皮恩扎大学的电气和能源工程系中名为Lambda。Lambda MG实验室以小规模A SB模拟,并与Dieee电网连接。lambda mg由光伏发电机(PV),电池能量存储系统(BESS),智能开关板(SW)以及不同的分类负载(关键,必不可少的和正常)组成,其中一些是可管理的且可控制的(照明,空调,空调,空调,智能插头)。Lambda实施的目的是使Diaee Smart用于节能目的。在Lambda实验室中,通信体系结构包括由两个主要国际标准(电气和技术监控系统的工业序列标准)和KONNEX(商业和家庭建筑自动化的开放标准)进行的大师/奴隶单位和执行器组成。使电气部门的智能原因从主电网中降低所需的电源。因此,为了实现目标,已经以两种模式进行了研究。最后,在不同的情况下对拟议的模型进行了研究,并从经济方面进行了评估。最初,基于SCADA系统的实时模式,该模式揭示了不同来源和负载的实际日常功耗和生产。接下来,将模拟零件分配给基于能量管理系统的主网格,负载和BES充电和放电的行为。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
Polly Rosemond,prosemo@entergy.com Kevin T. Boleware,(504) 670-3673,kbolewa@entergy.com D'Angela Savoie,dsavoi1@entergy.com Keith Wood,(504) 670-3633,kwood@entergy.com Derek Mills,(504) 670-3527,dmills3@entergy.com Ross Thevenot,(504) 670-3556,rtheven@entergy.com 1600 Perdido Street,L-MAG 505B New Orleans,LA 70112 Vincent Avocato,(281) 297-3508,vavocat@entergy.com Entergy New Orleans,LLC 2107 Research Forest Drive,T-LFN-4 The Woodlands,TX 77380 Courtney Nicholson,cnicho2@entergy.com Heather Silbernagel,(504) 576-2806,hsilber@entergy.com Leslie M. LaCoste,(504) 576-4102,llacost@entergy.com Lacresha D. Wilkerson,(504) 576-6571,lwilke1@entergy.com
3 虽然我们以战略授权为框架构建模型,但很容易看出,在投票环境中结果是一样的。中间选民定理在我们的设定中成立,因为代理人的间接效用是严格凹的。4 Harstad (2010)、Christiansen (2013) 以及 Kempf 和 Rossignol (2013) 研究了在环境以外的公共物品提供方面的战略授权。Harstad (2010) 分析了将权力委托给更保守或更进步的政治家的动机。虽然将权力委托给保守派可以提高保守派的谈判地位,但进步派更有可能被纳入多数派联盟,从而增加他们所代表的司法管辖区的政治权力。发现该模型中的授权方向取决于政治制度的设计。Christiansen (2013) 使用立法谈判模型表明,选民会将权力战略性地委托给“公共物品爱好者”。在 Kempf 和 Rossignol (2013) 的案例中,两个国家的选民各自委派一名代理人,然后该代理人与另一个国家的代表就提供具有跨国溢出效应的公共物品进行讨价还价。代表的选择在很大程度上取决于拟议协议的分配特征。
摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。