媒体报道始于公共活动,大规模对抗协作的作者分享了他们的发现,这些发现被报道为经验测试,并部分支持IIT 1-5。此消息在预印本之前直接传达给记者和公众1,2,因此在同行评审之前。这些实验似乎由不同实验室的大批学员巧妙地执行。然而,通过设计,研究仅测试了某些理论家做出的一些特质预测,这些预测与IIT 3,6,7的核心思想在逻辑上并不相关,因为其中一位作者本人也承认8。因此,这些发现并不支持该理论本身实际上经过有意义测试的说法,或者它具有“主导”,“良好的”或“领先”状态1-5,8。不幸的是,这种重要的细微差别在媒体报道1-5中丢失了。在科学界9-11中也质疑了这些主导地位的主张,但在6,8,12-16年中,IIT的支持者反复向公众广播。
在深刻理解道德考虑的基础上,获得有关道德人工智能系统设计的知识,优先考虑公平性、透明度和问责制;评估真实案例研究并解决实际项目,以开发和部署医疗保健、金融、能源等不同行业的人工智能解决方案;熟练实施人工智能解决方案,利用数据科学解决实际行业挑战;学会与利益相关者、团队成员和非技术受众进行有效沟通,弥合技术专长与业务目标之间的差距;探索以以人为本的方式管理和分析数据的关键方面,并了解干净、可靠的数据在人工智能项目中的重要性;培养识别人工智能机会、评估风险和做出数据驱动决策的能力;建立强调技术专长与以人为本技能相结合的技术和人际交往技能;学习如何以同理心、团队合作和对人类行为和需求的理解来领导人工智能项目。
我们介绍了Physgaussian,这是一种新方法,将物理扎根的牛顿动力学无缝地集成在3D高斯人中,以实现高质量的新型运动合成。采用自定义材料方法(MPM),我们的方法丰富了3D高斯内核,具有物理意义的运动学变形和机械应力属性,所有这些都符合连续力学原理。我们方法的定义特征是物理模拟和vi-sual渲染之间的无缝集成:这两个组件都利用相同的3D gaus-sian内核作为离散表示。这否定了三角/四面体缝合,行进的立方体,“笼子网格”或任何其他几何嵌入的必要性,突出了“您所看到的就是您所见的原则(WS 2)。”我们的方法证明了各种材料(包括弹性实体,塑料金属,非牛顿液和颗粒状材料)的特殊效果,展示了其在创建具有新颖观点和运动的Di-Verse视觉内容方面的强大能力。我们的项目页面是:https://xpandora.github。io/ physgaussian/。
Primary Healthcare System Enhancing Project (2024 to 2028) in Sri Lanka, supported by the World Bank ......................................................................................................................................... 20
Call: HORIZON-CL6-2024-CLIMATE-01 Topic: EU-China international cooperation on improving monitoring for better integrated climate and biodiversity approaches, using environmental and Earth observation Type of Action: HORIZON-RIA Acronym: BioClima GA Number: 101181408 Duration: 48 months Start Date: 01 Jan 2025 Project Cost: €4,999,437.50
如此严重的化学取代会扰乱自发极化的幅度和方向,以及 BiFeO 3 的结构和畴结构。[10–12] 因此,与纯 BiFeO 3 相比,La 取代的 BiFeO 3 中的畴结构高度随机化。此外,晶体对称性从菱面体变为单晶。[10,11,13] 规则 BiFeO 3 条纹畴结构的丧失可能会影响与应用相关的特性,例如前述磁电开关过程。由于任何铁性材料的功能都受其畴操纵的支配,因此对集成到电容器架构中的 La 取代 BiFeO 3 进行非侵入性操作研究对于了解取代诱导的畴结构的影响至关重要
虽然Tsukuba大学发布年度财务管理报告是为了加深您对大学活动的理解,但AY2019是我们发布了一份整体报告,将常规财务管理报告和非财务信息(例如大学的目标,倡议和活动表现)结合在一起。通过本报告,我们不仅希望履行我们对社会的问责制义务,还希望与大家分享大学对未来的愿景,进一步提高参与度,并根据我们与您的观点和对话来不断改善大学的持续增长。在准备此综合报告时,我们提到了国际综合报告框架(IIRC)。将来,我们打算进一步改善本报告的内容,以发布完整的集成报告以交付给您。
用于金属零件制造的增材制造 (AM) 因其灵活性和工艺能力而获得了越来越多的市场份额。AM 似乎特别适合小批量生产,例如高度定制的零件(例如,手术植入物中使用的假体)或原型。在这种情况下,电弧增材制造 (WAAM) 是一种能够以分层方式生产三维组件的工艺。WAAM 属于直接能量沉积技术 1 。通过专用头部选择性沉积熔融金属来创建层。原材料以金属丝的形式进料,并通过电弧的加热作用熔化 2 。 WAAM 的优势在于:(i)可实现的构建速度明显高于基于激光的增材工艺(50-130 克/分钟 vs. 2-10 克/分钟)3 ,以及(ii)可以生产更大的部件(1000-2000 毫米 vs. 300-600 毫米)4 。与其他基于粉末的 AM 工艺相比,WAAM 的主要缺点是尺寸精度和特征分辨率降低 5 。因此,WAAM 在经济上方便,适用于