本学习模块采用 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International BY-NC-SA 4.0 许可证,该许可证要求重复使用者注明创作者。它允许重复使用者以任何媒介或格式分发、重新混合、改编和基于该材料进行创作,但仅限于非商业用途。如果其他人修改或改编该材料,他们必须根据相同的条款对修改后的材料进行许可。4
9 Vollan Okoth Ochieng 和 Moses Waithanji Ngware,《COVID-19 疫情期间教育技术的采用:肯尼亚边缘化和弱势学习者群体的经历》(2023 年)32 国际教育改革杂志 464 于 2024 年 1 月 2 日访问。
人工智能 (AI) 带来的风险引起了学术界、审计师、政策制定者、AI 公司和公众的极大关注。然而,缺乏对 AI 风险的共同理解会阻碍我们全面讨论、研究和应对这些风险的能力。本文通过创建 AI 风险存储库作为共同的参考框架来解决这一差距。这包括一个从 43 个分类法中提取的 777 个风险的动态数据库,可以根据两个总体分类法进行过滤,并通过我们的网站和在线电子表格轻松访问、修改和更新。我们通过系统地审查分类法和其他结构化的 AI 风险分类,然后进行专家咨询,构建了我们的存储库。我们使用最佳拟合框架综合来开发我们的 AI 风险分类法。我们的高级人工智能风险因果分类法根据其因果因素对每种风险进行分类 (1) 实体:人类、人工智能;(2) 意向性:有意、无意;和 (3) 时间:部署前;部署后。我们的中级人工智能风险领域分类法将风险分为七个人工智能风险领域:(1) 歧视和毒性,(2) 隐私和安全,(3) 错误信息,(4) 恶意行为者和滥用,(5) 人机交互,(6) 社会经济和环境,以及 (7) 人工智能系统安全、故障和局限性。这些进一步分为 23 个子域。据我们所知,人工智能风险存储库是首次尝试严格整理、分析和提取人工智能风险框架,将其整合到一个可公开访问、全面、可扩展且分类的风险数据库中。这为以更协调、更一致、更完整的方式定义、审计和管理人工智能系统带来的风险奠定了基础。
本研究的目的是建立数字人文主义作为互联网和人工智能范式背景下技术变革的驱动力,以人与数字技术之间的社会互动为基础。本文使用一般的哲学和特殊的科学认知方法,特别是分析、综合、概括和建模、结构和功能、敏捷、价值论、协同方法。使用这种方法分析了数字人文主义作为现代发展概念的概念基础,它不仅促进技术进步,而且还考虑到互联网和人工智能在人与技术的社会互动中的挑战和机遇。作者确定了数字人文主义的问题及其克服方法,旨在确保技术发展服务于个人的社会福祉并提高社会生活质量。作者分析了互联网和人工智能时代数字人文主义的新趋势,这些趋势可以提供信息、教育、医疗服务等,使人们的生活更加舒适和富有成效。数字人文主义的概念促进了技术与人类价值观和需求的融合。识别人工智能对技术变革和社会互动的影响有助于创造人道和公正的社会。
人工智能和机器学习 (AIML) 辅修课程是一个包含三门课程的辅修课程。它对所有 VSB 学生开放,课程包括构建原型智能系统、自然语言处理、专家系统、监督和无监督学习、机器人技术以及构成广泛 AI 领域的其他领域。
人工智能 (AI) 在医疗行业内患者护理和诊断流程的变革中发挥着越来越重要的作用。本文探讨了机器学习、自然语言处理和计算机视觉等 AI 技术对提高诊断准确性、简化患者护理和增强临床工作流程的变革性影响。通过分析最近的进展和案例研究,本文重点介绍了 AI 驱动的工具如何支持早期疾病检测、个性化治疗计划和患者数据的有效管理。它还探讨了与 AI 实施相关的潜在挑战和道德考虑,例如数据隐私和算法偏差。本文最后概述了 AI 在医疗保健领域的未来方向,强调需要继续研究、跨学科合作和监管框架,以最大限度地发挥 AI 的优势,同时解决潜在风险。通过这一探索,本文旨在全面了解 AI 在推进患者护理和诊断实践方面的作用,最终有助于建立更有效、更公平的医疗保健系统。
“系统、决策和控制研究”系列(SSDC)涵盖了广泛认知的系统、决策和控制各个领域的新发展和进步以及最新技术水平——快速、最新且高质量。旨在涵盖与系统、决策、控制、复杂过程和相关领域相关的最新技术和未来发展的理论、应用和观点,这些领域涉及工程、计算机科学、物理学、经济学、社会和生命科学,以及它们背后的范式和方法。本系列包含系统、决策和控制方面的专著、教科书、讲义和编辑卷,涉及网络物理系统、自主系统、传感器网络、控制系统、能源系统、汽车系统、生物系统、车辆网络和联网汽车、航空航天系统、自动化、制造、智能电网、非线性系统、电力系统、机器人、社会系统、经济系统等领域。对于投稿者和读者来说,特别有价值的是较短的出版周期以及全球范围的分发和曝光,这使得研究成果能够广泛而迅速地传播。
在快速发展的人工智能 (AI) 领域,组织正在积极探索其变革能力。人工智能不可抗拒地挂在每个人嘴边——学者、公司、政策制定者和政府。可以说,人工智能越来越重要,并且越来越依赖我们生活的方方面面,但更广泛地说,它对社会的影响更大。特别是,企业对人工智能的兴趣已经深深地影响了投资决策,尽管必须注意,这并不是一个完全新的现象,至少当我们试图将商业智能的起源历史化时,它早在生成和分析人工智能出现之前就已扎根。此外,我们还看到政治实体(在这个意义上是国家)将人工智能纳入其投资战略和监管框架的能力可能带来的结果。同样,可以说,人工智能给私营和公共部门领域带来了不可否认的变革性影响,并且可能带来这种影响。
人工智能 (AI) 正在从根本上重塑各个行业,它增强了决策流程,优化了运营,并释放了新的创新机会。本文探讨了人工智能在四个关键领域的应用:医疗保健、金融、制造业和零售业。每个部分都深入探讨了这些行业面临的具体挑战、用于解决这些挑战的人工智能技术以及对业务成果和社会福利的可衡量影响。我们还讨论了人工智能集成的影响,包括道德考量、人工智能发展的未来轨迹,以及它在推动经济增长的同时带来需要负责任地管理的挑战的潜力。
用于 AI 模型的训练数据集,特别是用于训练语言模型的数据集。图书馆提供对大量文本语料库的访问,并促进 AI 内容的许可。加拿大大学图书馆非正式报告称,研究人员因学术出版商的糟糕工具和 AI 研究的高许可成本而受阻。这些工具价格昂贵、专有,并且缺乏研究人员所需的功能。TDM 活动的许可成本现在是大型跨国出版商的收入来源,要求图书馆多次支付使用相同内容的费用,尽管用途不同。此类行动体现了将所有用途商品化并从而缩小公共资源的动力,威胁公共利益并破坏了《版权法》在用户和权利人之间的平衡。
