NCVET、AICTE 和 UGC 等监管机构可以通过制定 AI 教育指南和标准来促进 AI 技能的培养。他们可以鼓励大学纳入符合 NHEQF/NSQF 的 AI 课程,制定教师培训计划,并提供基础设施和资源支持。AICTE 和 UGC 还可以促进学术界和产业界之间的合作,促进实习、联合研究项目和行业相关课程的开发。国家学分框架 (NCrF) 在确保各大学的 AI 技能统一方面发挥着至关重要的作用。通过将 AI 相关科目和学分纳入 NCrF,大学可以遵循标准化的课程和评估流程。这确保了学生无论在哪个机构都能接受一致水平的 AI 教育。
• 没有。• PM&C 过去曾进行过一些小规模的 AI 测试。• PM&C 目前尚未使用 ChatGPT,但如果存在业务需求,PM&C 会考虑使用它。• 尚未对 ChatGPT 进行网络安全审查。• ChatGPT 与 PM&C IT 网络上使用的所有系统一样,必须安全且稳定,才能兼容用于 PM&C 的机密网络。• 对 ChatGPT 或其他类似系统的任何评估都将按照 PM&C 的标准系统授权审查流程进行,并且由于该服务的独特性,通常会涉及澳大利亚网络安全中心。• 如果需要 - PM&C 内部对 AI 的主要用途是一个简单的聊天机器人,它为用户提供有关 PM&C 企业协议的基本信息。o 此次测试仅作为概念验证,目前已不再有效。• ACSC 尚未向 PM&C 提供任何关于使用 AI 或 ChatGPT 的指导。
成立于2014年,Deepki开发了一种SaaS解决方案,该解决方案使用数据情报来指导房地产参与者的净零过渡。该解决方案利用客户数据来改善资产的ESG(环境,社会和治理)绩效,并最大化资产价值。Deepki在60个国家 /地区开展业务,遍布巴黎,伦敦,柏林,米兰和马德里的400多名团队成员。该公司为将军房地产,瑞士人资产经理和法国政府等客户提供服务,帮助使他们的房地产资产更加可持续。Deepki现在监视全球150万种资产,通过将其CO₂排放量减少5%,帮助其客户与巴黎协议保持一致。
67 为了充分描述实验程序或概念,本文件中可能会标识某些商业实体、设备或材料。69 此类标识并不意味着国家标准与技术研究所的推荐或认可,也不意味着实体、材料或设备一定是可用于此目的的最佳实体、材料或设备。72 73 74 75 76 77 78 79 80 81 82 国家标准与技术研究所 NISTIR 8332-draft 83 Natl.Inst.Stand.Technol.NISTIR 8332-draft 84 29 页(2021 年 3 月) 85 86 本草案出版物可从以下网址免费获取: 87 https://doi.org/10.6028/NIST.IR.8332-draft 88 89 90 91 92 93 94 请将对本文档的评论发送至:AIUserTrustComments@nist.gov 95
摘要:在人工智能(AI)和机器学习(ML)技术的迅速发展之后,面部识别技术已成为生物识别领域内的重要研究重点。本文研究了AI和ML算法的最新进步,以提高面部识别的准确性和速度。首先,对面部识别技术的发展进行了全面审查。它可以追溯从传统方法到深度学习技术的应用,同时还总结了现有技术的优点和局限性。随后,本文中使用的关键技术在细致的情况下详细阐述了这些卷积神经网络(CNN),深度学习功能提取,转移学习,以及面部识别中的注意机制。在处理复杂的场景,不同的照明条件和遮挡情况时,这些显着增强了模型的处理能力。此外,本文对隐私保护和道德问题进行了探索,它提出了旨在在不损害身份绩效的情况下增强数据保护和隐私安全的策略。最后,这项研究的主要发现被封装,并概述了未来的研究方向。这项研究不仅为开发面部识别技术提供了理论的基础和实践指导,而且为促进AI技术在社会生活中的广泛应用铺平了道路。这些包括进一步优化算法以减少计算资源的消耗,开发更有效的数据增强技术以增强模型概括,并探索更广泛的应用程序场景,例如智能安全,个性化服务和可访问性辅助系统。
征文 网络安全格局不断变化,为安全专业人员带来源源不断的数据流。有价值的威胁情报隐藏在这一庞大的数据流中,包括社交媒体、技术报告和暗网论坛中报道的文本。传统上,网络威胁情报 (CTI) 依赖于手动分析或基本的关键字匹配,导致瓶颈和错失机会。安全分析师面临着数据量巨大的限制、代码混淆和社会工程等策略的复杂性,而威胁的快速发展需要实时处理才能领先于攻击者。在当今的数字环境中,数据量和复杂性不断增加,自然语言处理 (NLP) 技术和大型语言模型已成为解密和缓解网络威胁不可或缺的工具。NLP 使机器能够理解和处理人类语言,为 CTI 提供了显著的好处,例如自动处理、高级威胁检测和实时分析,从而可以立即识别和响应威胁。因此,有效地提取和分析这些信息对于主动防御策略至关重要。本次研讨会探讨了人工智能/生成式人工智能在网络安全领域(尤其是 CTI 收集和分析领域)的革命性潜力。研讨会将为研究人员、从业人员和爱好者提供一个平台,让他们更深入地探讨与 NLP、大型语言模型 (LLM) 以及更广泛意义上的网络安全和网络威胁情报背景下的人工智能技术相关的专业主题。