富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
巡航起源配备了一个传感器套件,该套件由相机,雷达和雷达(Radars and LiDars)组成,在原点的外部可见。类似于螺栓,外部传感器阵列使Cruise Origin可以收集有关其环境的信息并为系统的驾驶决策提供信息。原点是一台计算机,该计算机包括系统的“大脑”。计算机及其冗余备份,旅行时乘客将看不到或无法访问。自主技术是通过迅速综合传感器套件收集的信息来通过感知(了解环境),预测和计划(评估给定环境的车辆可能的安全路径或轨迹)和控制措施(驱动器操作)来告知行为的工作。有关巡航起源系统如何工作的更多信息,并被设计为安全驱动程序,请在此处和我们的引擎盖介绍中提供的GM安全报告中提供。3,4
摘要 - 为了充分利用移动操纵机器人的功能,必须在大型未探索的环境中自主执行的长途任务。虽然大型语言模型(LLMS)已显示出关于任意任务的紧急推理技能,但现有的工作主要集中在探索的环境上,通常集中于孤立的导航或操纵任务。在这项工作中,我们提出了MOMA-LLM,这是一种新颖的方法,该方法将语言模型基于从开放式摄影场景图中得出的结构化表示形式,随着环境的探索而动态更新。我们将这些表示与以对象为中心的动作空间紧密地交织在一起。重要的是,我们证明了MOMA-LLM在大型现实室内环境中新型语义交互式搜索任务中的有效性。最终的方法是零拍摄,开放式摄影库,并且可以易于扩展到一系列移动操作和家用机器人任务。通过模拟和现实世界中的广泛实验,与传统的基线和最新方法相比,我们证明了搜索效率的显着提高。我们在http://moma-llm.cs.uni-freiburg.de上公开提供代码。
手势在人类和人类机器人相互作用中起着关键作用。在基于任务的上下文中,诸如指向之类的神性手势对于指导关注与任务相关的实体至关重要。虽然大多数基于任务的人类和人类手机Di-Alogue专注于封闭世界领域的工作,但重新研究已开始考虑开放世界任务,在这种任务中,与任务相关的对象可能不知道与先验者相互作用。在开放世界任务中,我们认为必须对手势进行更细微的考虑,因为交互者可以使用桥接传统手势类别的手势,以便浏览其任务环境的开放世界维度。在这项工作中,我们探讨了在开放世界任务上下文中使用的手势类型及其使用频率。我们的结果表明需要重新考虑在人类和人类机器人相互作用的研究中进行手势分析的方式。
和一个锅的不同)或意图(例如通过刀与使用它进行切割),我们人类可以毫不费力地描绘出与日常生活中日常物体的这种互动。在这项工作中,我们的目标是构建一个可以同样生成合理的手动配置的计算系统。具体来说,我们学习了一个基于扩散的常规模型,该模型捕获了3D相互作用期间手和对象的关节分布。给定一个类别的描述,例如“握着板的手”,我们的生成模型可以合成人手的相对配置和表达(见图1个顶部)。我们解决的一个关键问题是,该模型是什么好的HOI表示。通常通过空间(签名)距离场来描述对象形状,但人的手通常是通过由发音变量控制的参数网格建模的。我们提出了一个均匀的HOI表示,而不是在生成模型中对这些不同的代表进行建模,并表明这允许学习一个共同生成手和对象的3D扩散模型。除了能够合成各种合理的手和物体形状的综合外,我们的扩散模型还可以在跨任务的辅助推理之前作为通用,而这种表示是所需的输出。例如,重建或预测相互作用的问题对于旨在向人类学习的机器人或试图帮助他们的虚拟助手来说是核心重要性。重建的视频重新投影错误)或约束(例如我们考虑了这些行沿着这些行的两个经过深入研究的任务:i)从日常交互剪辑中重建3D手对象形状,ii)鉴于任意对象网格,合成了合理的人类grasps。为了利用学到的生成模型作为推论的先验,我们注意到我们的扩散模型允许在任何手动对象配置给定的(近似)log-likelihood梯度计算(近似)log-likelihoodhoodhood。我们将其纳入优化框架中,该框架结合了先前的基于可能性的指南与特定于任务的目标(例如已知对象网格的合成)推理。虽然理解手动相互作用是一个非常流行的研究领域,但现实世界中的数据集限制了3D中这种相互作用的限制仍然很少。因此,我们汇总了7种不同的现实世界交互数据集,从而导致157个对象类别的相互作用长期收集,并在这些范围内训练共享模型。据我们所知,我们的工作代表了第一个可以共同生成手和对象的生成模型,并且我们表明它允许综合跨类别的各种手动相互作用。此外,我们还经验评估了基于视频的重建和人类掌握合成的任务的先前指导的推断,并发现我们所学的先验可以帮助完成这两个任务,甚至可以改善特定于特定于任务的状态方法。
总结本文探讨了专注于互动性的艺术和技术领域的实践,尤其是互动艺术。 div>我们研究了与互动艺术相关的关键概念,例如互动者的作用,互动美学,娱乐性特征和关系架构师以及其他要素。 div>为此,我们考虑了莫里斯·贝纳诺(Maurice Benayoun),Studio azzurro,Marcel-líAntunezRoca和Rafael Lozano-Hemmer等艺术家的互动作品。 div>此外,我们质疑具有暂时的计算机技术,尤其是涉及人造轻度的计算机技术的定义。 div>我们试图通过促进互动概念及其对当前技术进步的反应来促进当前辩论的贡献,其响应于当前的技术进步,这些技术涵盖了一系列旨在模仿人类认知功能的系统。 div>最终,我们提供了有关互动艺术的观点,目的是有助于对艺术和技术中的互动性进行更广泛的了解,作为一种系统性,视觉,技术和美学体验。 div>
但是现在,尽管文字处理尚未完成分析,但可用性的前沿已经因为新应用程序和新界面技术的开发和引入而不断向前推进。电子邮件和计算机会议支持等通信应用程序所带来的可用性挑战远比文字处理向非程序员扩展所带来的挑战更加多样化。在当前技术中,多个用户通过极其不同的工作站类型协作访问多个应用程序。就在这些新领域的可用性问题得到阐述和探索的同时,前沿原型正在引入手势(例如手写)和语音输入以及交互式视频输出。这些新发展正在整个行业中以更快的速度、更广泛地发生,并随着时间的推移影响更多的用户。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
了解人类的社会行为对于综合愿景和机器人技术至关重要。微观的观察(例如,分裂行动)不足,需要采取一种全面的方法来考虑个人行为,组内动态和社会群体层次,以彻底理解。要解决数据集限制,本文引入了JRDB-Social,JRDB的扩展[2]。旨在填补跨室内和室外社会环境的人类理解的空白,JRDB-Social提供了三个层次的注释:个体属性,组内侵入和社会群体环境。该数据集旨在增强我们对机器人应用的人类社会动态的理解。利用最近的尖端多模式大型语言模型,我们评估了我们的基准,以表达其破译社会人类行为的能力。
抽象的幽门螺杆菌是最常见的人类病原体之一,可能引起胃肠道(GI)疾病,包括简单的胃炎,胃溃疡和恶性胃炎。在某些情况下,例如免疫缺陷和潜在疾病,它可能是机会性感染。糖尿病(2型)(T2DM)是幽门螺杆菌的潜在疾病之一。由于在糖尿病患者中观察到胃肠道问题,因此有必要治疗幽门螺杆菌感染。在这篇综述中,我们的目的是根据流行病学调查评估幽门螺杆菌和T2DM之间的可能关系,该研究从数据库中检索出的70项研究,包括Scopus,PubMed和Google Scholar,介绍了H. Pylori和T2DM之间的关系,并讨论了此相关性的背景机制。根据我们的研究结果,不同的研究表明,幽门螺杆菌在2型糖尿病患者中比健康的个体或非糖尿病患者更为普遍。原因是幽门螺杆菌感染引起的炎症和炎症细胞因子的产生以及该细菌与糖尿病有关的细菌的不同激素失衡。通过追踪糖尿病患者的抗幽门螺杆菌抗体,以及> 75%患者的消化问题等症状的发生,可以得出结论,该细菌和T2DM之间存在关系。考虑到证据,至关重要的是,在T2DM患者中评估幽门螺杆菌感染的可能性,以使患者的医疗过程受到更高的谨慎态度。