用户控制图片(亮度,对比度,清晰度,背部,色彩,颜色,降噪,选择,低蓝光,低光,颜色温度,颜色控制,颜色控制,超级,图片重置),屏幕(缩放模式,自定义缩放,屏幕重置),音频(balance,balance,balance,traleble,treble,bass,bass,bass,audio nof(line out out(line),最高),最大volume, mute, audio reset, audio out sync, speaker setting), configuration 1 (Android launcher, switch on state, Touch lock, Touch mode, mouse mode, panel saving, RS232 routing, boot on source, WOL, conf.1 reset, factory reset), configuration 2 (OSD timeout, OSD H position, OSD V position, system rotation, info OSD, logo and animation, logo setting, animation设置,监视ID,监视信息,HDMI版本,conf2重置),高级选项(售货亭模式,侧栏,无信号图像,电动支架,电动控制,电源LED照明,风扇,关闭计时器,时间表,带有一根电线的HDMI,带有一线电线的HDMI,一根电线,故障转移,语言,OSD透明度,电源节省,电源节省,高级选项,高级选项重置)
摘要◥目的:大约20%的RAS野生型转移性结直肠癌(MCRC)的患者经历了对抗EGFR抗体西素单抗的客观反应,但很少实现消除疾病。肿瘤收缩的程度与长期结局相关。我们的目的是找到合理组合,通过破坏对抗凋亡分子的适应性依赖性(BCL2,BCL-XL,MCL1)来增强西妥昔单抗的效率。实验设计:实验是在患者衍生的异种移植物(PDX)和类器官(PDXO)中进行的。凋亡的底漆。促凋亡和抗凋亡蛋白复合物。通过caspase激活PDXOS和监测PDX生长来评估组合疗法的影响。结果:由314个PDX队列中的人口试验,由许多患者确定,确定46个模型(14.6%),具有明显的
用户控制图片(亮度、对比度、清晰度、背景级别、色调、颜色、降噪、伽玛选择、低蓝光、色温、颜色控制、过扫描、图片重置)、屏幕(缩放模式、自定义缩放、屏幕重置)、音频(平衡、高音、低音、音量、音频输出(线路输出)、最大。音量,最小。音量、静音、音频重置、音频输出同步、扬声器设置)、配置 1(Android 启动器、开启状态、触摸锁、触摸模式、鼠标模式、面板保存、RS232 路由、启动源、WOL、conf.1 重置、恢复出厂设置)、配置 2(OSD 超时、OSD H 位置、OSD V 位置、系统旋转、信息 OSD、徽标和动画、徽标设置、动画设置、显示器 ID、显示器信息、HDMI 版本、conf.2 重置)、高级选项(信息亭模式、侧边栏、无信号图像、电动支架、红外控制、电源 LED 灯、风扇、关闭定时器、时间表、单线 HDMI、单线 HDMI 关闭、故障转移、语言、OSD 透明度、省电、高级选项重置)
简介 十一年前,马希尔 (Maher) 问道:“谁在创造?” (Maher 2012),并提出了几个创造性应用的分析空间,包括构思和互动两个维度。马希尔的问题引出了乔丹诺斯 (Jordanous) 的 PPP 视角框架,其中创造行为可以由人类或人工智能 (Jordanous 2016) 执行,以及坎托萨洛 (Kantosalo) 和塔卡拉 (Takala) 的 5C 框架,其中创造行为由人类和人工智能共同组成的集体执行 (Kantosalo and Takala 2020)。1然而,对于人与人工智能互动中创造力的位置,人们的共识较少。混合主动性创造性界面方法提出了一组基本的细粒度活动,这些活动可以由人类或人工智能以某种结构化对话的形式执行(Deterding 等人,2017 年;Spoto 和 Oleynik,2017 年),随后扩展到生成应用(Muller、Weisz 和 Geyer,2020 年),针对特定算法方法进行了改进(Grabe、Duque 和 Zhu,2022 年),并针对其他算法方法进行了批评(Zheng,2023 年)。虽然这些方法生成了重叠的分析动作词汇,但它们并没有解决创造力在何处发生(以及由谁或什么通过这些动作发生)的问题。在这篇短文中,我们提供了对该问题的一个答案的几个例子。我们重新利用 Kantosalo 和 Takala (2020) 的 5C 中的集体概念,提出一种类型的创造力可能会在以下互动空间中不对称地出现 (Rezwana and Maher 2022)
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
摘要在线第二语言教学近年来蓬勃发展,在技术能力和COVID-19大流行导致的教学方式的强迫变化的帮助下。这种转变强调了互动在在线教育学中的关键作用。研究表明,增加学生与讲师之间互动的机会增加对于培养第二语言获取(SLA)至关重要。但是,很少有研究量化在线语言教学中的不同类型的相互作用的产生,尤其是在经验丰富的讲师中。本研究利用互动主义框架对在线西班牙语课程中的互动进行定量分析,并根据互动启动类型进行分类:指导者提出的参与(IPP),未提出的口头参与(UOP),未提及的文本参与(UTP),即聊天(即,聊天的时间段)(即,均一次的范围)(即及时的范围),并在展示范围(ever),并在展示范围(即及格)。这些转弯)。数据包括在英国一所远程学习大学中跨越熟练的LEV ELS和课程类型的同步L2西班牙语教学的视频记录。课程类型包括语法研讨会和考试准备。结果表明,在线语言课程中的互动模式受熟练程度和课程类型的影响。较低的熟练度学生更频繁地从事互动程序,而参与扩展话语的能力取决于Spe cific活动/课程类型。这项研究有助于解决除英语(Lote)以外的LAN Guages的互动和语言教学研究的缺乏。
摘要简介/目标。草药一直是整个人类历史上至关重要的可再生医学来源,因为大部分全球人口仍然取决于它们的健康益处。草药补充剂的日益普及引起了人们对与其他药物原位的总体安全性和潜在互动的明显关注。目的是刺激对草药 - 药物相互作用的未来研究,以及了解这种相互作用的后果的相互作用机制。方法。该审查是通过使用Google Scholar,Science Direct,Mendeley,Scopus和PubMed的数据库进行系统搜索进行的。用英语编写的出版物被使用。据报道,许多草药产品与已知的东正教药物相互作用。抑制诱导机制触发链反应,通常导致药物生物利用度,毒性或不良副作用降低。据报道,一些草药植物构成结合了CYP2C9,CYP2C19,CYP2E1和CYP3A1,以及许多其他暂时或不可逆地结合了CYP3A1。结论。这项研究是通过重申常规和定期向医生和患者提供固有危险(例如降低疗效和与Herb-Drug相互作用(HDI)相关的毒性增加)的不完善性结束的结论。草药使用者应定期建议适当使用草药补充剂,以避免在共同给药期间或联合疗法中发生不良药物相互作用的风险。在HDI中可以观察到协同作用和拮抗作用,因此需要进一步的临床前和临床经验研究来强调HDI的机制和程度。关键字:草药 - 药物相互作用,酶,药代动力学互动,传统医学,细胞色素P450通讯作者:Mary O. Ologe电子邮件:FunMiologe@yahoo.com
每篇论文的演讲时间不应超过 30 分钟,这样我们才能有足够的时间进行讨论。演讲应侧重于阐述论文的动机、相关工作、工具/研究设计、研究问题、发现、局限性和未来工作。为了使您的演讲更具洞察力,请尝试以文献为中心,并告诉观众为什么首先提出这项工作,它如何增进人们对某个主题的理解,以及它与过去其他相关工作有何不同。我们还鼓励您将指定论文与您自己的研究联系起来。您应该准备一组问题(您可以自己提出问题,也可以基于其他学生在 Piazza 上发布的问题),并在演讲后与讲师一起根据这些问题共同主持课堂讨论。
本论文研究了不同的用户界面 (UI) 设计如何影响用户对生成式人工智能 (AI) 工具的信任。我们进行了一项实验,采用绿野仙踪方法测试了三种具有不同 ChatGPT UI 变体的工具的信任级别。来自不同学科的九名志愿大学生参加了实验。我们使用问卷来评估参与者在与每种工具交互后以及与所有工具交互后的信任感知。结果表明,参与者之间的信任水平受到生成式 AI 的 UI 设计的影响,尤其是头像设计和文本字体。尽管共享相同的文本源,但大多数参与者认为 ChatGPT 与其他工具相比最值得信赖。结果还强调了对话界面在与生成式 AI 系统建立信任方面的重要性,参与者表示更喜欢促进自然和引人入胜的交互的界面。该研究强调了 UI 对信任的重大影响,旨在鼓励对生成式 AI 更加谨慎的信任。
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。