框1:表征场景可能性的术语,通常使用许多术语来描述场景的可能性。严格来说,鉴于潜在的未来数量众多,因此可以预测实现未来的情况的可能性准确地预测了未来的未来。我们在这里参考了一个场景的可能性,该方案近似许多关键输出变量(例如强迫)。一个合理的场景包含一系列发生的结果,这些结果的发生可能性不可忽略(参见(Carter等,2007 :))因此,令人难以置信的情景的发生可能会忽略不计。合理性是一种主观判断,可以基于许多标准。因此,将其与可行性的相关概念进行比较是有用的。可行性通常用于描述发生行动的潜力,因此与从给定的行动过程中得出的方案更加紧密相关。然而,尽管这两个术语之间存在细微的差异,但在对合理性做出判断时,我们可以借用IPCC评估中确定的可行性的多个维度:地球物理,技术,经济,社会文化和制度性(Brutschin et al。,2021; Riahi et al。等,2018b)。换句话说,要使方案是合理的,应该根据上述5个维度可行。文献中有时使用的其他方案描述符包括可能的方案,其中包括一系列结果,这些结果的发生可能性是非零的,因此可能是或可能不可能的。可能(或可能的)场景具有基于当前趋势的知识以及对未来发展和行动的共同期望的可能性相对较高的可能性。222
摘要。我们检查了六个气候模型的北极海冰性能的过去和预计变化,该模型在耦合模型对比的耦合模型对比ISON项目阶段6(CMIP6)中的高分辨率模型对比项目(HighResmip)中进行了调查。在大雷值中,每个实验都使用参考分辨率结构(与典型的CMIP6运行一致)和更高分辨率的配置进行运行。分析了水平网格分辨率在大气模型组件和海洋模型组件中的作用,在北极海冰覆盖的过去和繁殖变化中。模型输出来自耦合的历史(Hist-1950)和Future(HighreRes-Future)运行,用于描述北极海冰的多模型,多分辨率表示,并评估该分辨率增强原因的系统差异(如果有)。我们的结果表明,海冰覆盖的表示与海洋/大气网格之间没有密切的关系。 Horizontal分辨率的影响取决于所检查的海冰特征和所使用的模型。然而,与大气的重新构造相比,海格的重新构成具有更大的作用,涡流的海洋结构通常可以提供更现实的海冰区和海冰边缘的代表。所有型号都大量的海冰缩小:北极从1950年到2050年损失了近95%的海冰量。基于历史表现的模型选择可能会提高模型预测的准确性,并预测北极最早在2047年将无冰。随着整个海冰的损失,注意到总海冰的空间结构的变化及其在冰层中的划分:边际冰区(MIZ)将在2050年到2050年主导冰盖,这表明向新的海冰制度转移到了更接近Cur-
1 NASA GODDARD太空飞行中心,美国马里兰州格林贝尔特; geronimo.l.villanueva@nasa.gov 2综合太空科学技术研究所,美国大学,华盛顿特区物理学系,美国3 NASA GSFC卖家外部环境合作,格林贝尔特,马里兰州,美国医学博士4 Eth Zurich,Zurich,Zurich,Zurich,Zurich,粒子粒子物理和天体物理学和天文学研究所,Wolfgggang-Pauli-pauli-s-Str。27, 8093 Zurich, Switzerland 5 National Center of Competence in Research PlanetS, Switzerland 6 Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012 Bern, Switzerland 7 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA 8 Planetary Sciences Group, Department of Physics, University of Central Florida, USA 9美国宇航局博士后计划研究员,美国国家航空航天局太空飞行中心,美国马里兰州格林贝尔特,美国10劳拉多尔D'Astrophysique de Bordeaux,Univ。Bordeaux,CNRS,B18N,AlléeGeoffroySaint-Hilaire,33615法国PESSAC,法国11地球与行星科学系,加利福尼亚州,加利福尼亚大学,加利福尼亚大学,92521,92521,美国,美国12物理学和天文学公斤。Lyngby,丹麦14号大都会,埃克塞罗伊路,埃克塞罗伊路,英国埃克塞罗伊路15号埃克塞罗伊路15号太空科学技术研究中心,NASA / GSFC,Greenbelt,Greenbelt,MD 20771,MD 20771,美国16 NASA AMES Research Center,Mountain View,CA 94035,美国CA 94035,美国2023年20023年20023年20023年20023年20023年20023年2月21日; 12月26日修订了2023年; 1月17日接受2024;出版于2024年3月8日
Bloch-Johnson,J。Orcid:https://orcid.org/0000-0000-0002-8465-5383,Rugenstein,M。A.A. OrcID:https://orcid.org/0000- 0002-4541-3277,Alessi,M.J。Orcid:https://orcid.org/0000-0000-0000-0000- 0001-5400-00400-008X赵,M。格雷戈里(J. https://orcid.org/0000-0003-2206-2424,Kang,S.M。Orcid:https://orcid.org/000000-0000-000-0003-4635-275X和Zhou,C.orcid: (GFMIP)协议。 建模地球系统进步杂志,16(2)。 E2023MS003700。 ISSN 1942-2466 doi:https://doi.org/10.1029/2023MS003700可在https://centaur.reading.ac.uk/115194/ 上找到A. OrcID:https://orcid.org/0000- 0002-4541-3277,Alessi,M.J。Orcid:https://orcid.org/0000-0000-0000-0000- 0001-5400-00400-008X赵,M。格雷戈里(J. https://orcid.org/0000-0003-2206-2424,Kang,S.M。Orcid:https://orcid.org/000000-0000-000-0003-4635-275X和Zhou,C.orcid: (GFMIP)协议。建模地球系统进步杂志,16(2)。E2023MS003700。 ISSN 1942-2466 doi:https://doi.org/10.1029/2023MS003700可在https://centaur.reading.ac.uk/115194/ 上找到E2023MS003700。ISSN 1942-2466 doi:https://doi.org/10.1029/2023MS003700可在https://centaur.reading.ac.uk/115194/
Potja Fliers 1,Jan Volkhow 1,Stefa 1,Jawa 1,Christoplas Li。,Christoplas 1,Jawa L. Blancharn 3,Cheryl Sulian 4,Collinen M.,Tyle D.,Kliena Nielmoas 3,Menan Heng。 Waten 1, Mathina Ranger 1, Diank, Xulg TINGTING WANT 13 ,FUO SUN 13, £ sane: saumer 1, Google Juzburn 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22, Eleanor 22,Eleanor 22,Eleanor 22,Eleanor 22,Eleanur Burke 23,Angelgole Sas $ 24,Noah Smdia 22,Frascert Frthal Hooker 23,Ralof Maice 23,Rarofa 31,Rarofa 31,Rarofa 31,Rarof Marbey 323.33 / div>
缩写: CH1 CH:穿越欧洲之前的测量 CH2 CH:穿越欧洲之后的测量 DE DE:在风洞中进行的测量 DE Pipe DE:在管道中进行的测量(仅限 Mini) IT Lar IT:在大型风洞中进行的测量 IT Sma IT:在小型风洞中进行的测量 IT Arm IT:在旋转臂上进行的测量 IT Tank IT:在油箱中的托架上进行的测量 JP WT JP:在风洞中进行的测量 JP Car JP:在牵引托架上进行的测量 NL Raw NL:未针对阻塞效应进行校正 NL Cor NL:针对阻塞效应进行校正 US Low US:在低速风洞中进行的测量 US High US:在高速风洞中进行的测量 US S Low US:在低速风洞中制作的备用风速计的测量(仅限微型) US S High US:在高速风洞中制作的备用风速计的测量(仅限微型)。
缩写: CH1 CH:穿越欧洲之前的测量 CH2 CH:穿越欧洲之后的测量 DE DE:在风洞中进行的测量 DE Pipe DE:在管道中进行的测量(仅限 Mini) IT Lar IT:在大型风洞中进行的测量 IT Sma IT:在小型风洞中进行的测量 IT Arm IT:在旋转臂上进行的测量 IT Tank IT:在油箱中的托架上进行的测量 JP WT JP:在风洞中进行的测量 JP Car JP:在牵引托架上进行的测量 NL Raw NL:未针对阻塞效应进行校正 NL Cor NL:针对阻塞效应进行校正 US Low US:在低速风洞中进行的测量 US High US:在高速风洞中进行的测量 US S Low US:在低速风洞中制作的备用风速计的测量(仅限微型) US S High US:在高速风洞中制作的备用风速计的测量(仅限微型)。
nist.gov › 文档 PDF 量子计量学部,国家物理实验室,特丁顿,米德尔塞克斯 TWII OLW,英国。光学测量部,国家办公室...