Hiramatsu、B. Ho、S. Jaloviar、I. Jin、S. Joshi、S. Kirby、S. Kosaraju、H. Kothari、G. Leatherman、K. Lee、J. Leib、A.
Sara Iraci 等人在本文中,我们介绍了一种基于 NbxTi(1-x)N (NbTiN) 的超导双金属级 (2ML) BEOL 单元工艺,该工艺是在 imec 的 300 毫米试验线上使用半镶嵌流程和 193i 光刻技术开发的。该单元工艺的特点是直接金属蚀刻线的最小临界尺寸 (CD) 为 50 nm,浅平面化通孔的最小 CD 为 80 nm,沉积温度为 420 °C,与 CMOS BEOL 电介质兼容。50 nm NbTiN 线的归一化线电阻表明,95% 的器件符合预期电阻 800-1200 Ω/µm,与覆盖膜电阻率一致。低温测量表明,NbTiN 导线和通孔的临界温度为 12-13.5 K,临界电流密度为 80- 113mA/µm2。▪ 低电阻堆叠通孔金属化用于未来的互连,Marleen H. van
拦截客户端和服务器之间的弱安全连接,并窃听它们之间传递的安全流量。然后,攻击者可以在网络中传输设备和接收设备之间的任何设备中安装网络监控软件。大型网络内的设备监控变得更难检测。有许多数据安全方法,例如数据加密、加密密钥管理和标记化,但随着这些保护网络数据的方法变得越来越复杂,拦截 JU *O QBSUJDVMBS UIF FNFSHFODF PG RVBOUVN DPNQVUFST XIJDI BSF FYQFDUFE 的手段也变得越来越复杂,以便能够解决无法使用传统计算机解决的数学问题,这不可避免地对网络安全构成了重大威胁,并攻击了当今加密的基础。量子密钥分发 (QKD) 是一种新的加密和身份验证方法,它利用“叠加”和“纠缠”的量子效应来实现秘密对称加密密钥的交换,这些密钥是安全的,甚至可以抵御量子计算驱动的窃听尝试。
绝缘子粘合胶的粘合强度 (又称搭接剪切强度) 会降低,在高于其额定值的温度下会开裂并最终脱落。搭接剪切强度是衡量胶粘剂粘合强度的标准指标。它取决于胶粘剂在施加剪切力 (平行于粘合表面的力) 时将两个表面粘合在一起的能力。对于绝缘子粘合胶,保持高搭接剪切强度至关重要,因为它能确保绝缘层即使在物理应力下也能保持粘合。但是,在超过胶粘剂规定额定值的温度下,胶粘剂的聚合物结构会开始降解。这种降解有多种形式:软化、聚合物链之间失去粘结力,甚至粘合材料发生化学变化。
• V7X 系列提供功率、速度、 • 95X 系列提供功率、速度、 • 964i 高压切换,用于自动精度和分辨率测试系统 • 交流和直流输出电压高达 5KV • 交流/直流输出范围广,高达 • 多导体/多点 • 计算精度和速度 30 kV 交流和 15 kV 直流 • 8 通道高压切换卡(8 个超过行业标准 • 每张卡的计算精度和速度,总共 64 个测试点) • 彩色触摸屏和自动测试超过行业标准 • 可配置电压额定值 - 可用软件 - 电流 3kV、7kV、10kV 和 15kV 的分辨率为 100 pA • 彩色触摸屏和自动测试软件可用
�� l, f = Ton - Toff;实验室、现场 fl, f = 热循环频率;循环次数;实验室、现场每天必须至少 6 次 Qc = 芯片功率,W Θ jc = 芯片结至外壳电阻,°C/W Θ jl = 芯片结至引线(即球)电阻,°C/W Θ ja = 芯片结至环境电阻,°C/W 简介 PowerPC 603 和 PowerPC 604 RISC 微处理器 可扩展的 PowerPC™ 微处理器系列(图 1)由 Apple、IBM 和 Motorola 联合开发,被设计用于高性能、高性价比的计算机(包括笔记本电脑、台式机、工作站和服务器)。PowerPC 微处理器系列包括从 PowerPC 601™ 微处理器到 PowerPC 620™ 微处理器。PowerPC 603 微处理器是 PowerPC 精简指令集计算机 (RISC) 架构的低功耗实现。
对星载射频 (RF) 系统(例如卫星上的 S 波段通信天线)的可靠性问题通常集中在具有复杂电路的组件上。同样重要且最常被忽视的是设备之间的互连。有缺陷的混合耦合器和功率分配器中的故障通常可归因于不稳定的互连。连接器的可靠性对于太空环境中的应用尤其重要,因为太空环境中的温度偏移高达 ± 100°C,因为连接的电气稳定性与其热机械稳定性直接相关。此外,随着系统性能和可测试性目标变得更加严格,连接器与现代高性能系统的所有组件一样,必须满足对更严格公差和规格的日益增长的需求。
在设计用于宽带模拟和数字的包装时,例如在串行通信链路或测试和测量应用中使用的包装,必须格外小心,以确保通过芯片上的芯片维持信号保真度到芯片外互连路径。芯片,例如电子测试仪器中使用的串行收发器或放大器,可能具有从DC到10s GHz的操作带宽,并且通常将其集成到50 O系统中。在包装和印刷电路板(PCB)上设计受控的阻抗传输线,这是一个相对简单的物质。但是,这两个领域之间的连接变得更加复杂。片上受控信号路径通常通过电线键连接路由到芯片上受控的阻抗路径。电线键连接由一端连接到IC上的键垫的电线组成,并在另一端连接到包装基板上的传输线(或直接在芯片板应用中的PCB上)。由于这些线键是电线的薄环,从接地平面上循环,它们几乎总是对电路感应,在信号路径中显示出比更高的特征阻抗的一部分。图。1。此简化的图形在陶瓷包装基板上显示了一个腔化的IC。模具位于陶瓷基板形成的腔体内,并粘合到铜模板上。粘结线从芯片控制的阻抗传输线连接到包装基板上的传输线。芯片厚度和陶瓷底物的厚度大致相等,因此
摘要 本文详细介绍了为确定下一代战斗机对高速数据总线的需求而进行的研究,对各种高速数据总线技术进行了比较,并对光纤通道航空电子环境 (FC-AE) 数据总线协议的选择进行了说明。基于这项研究,提出了采用 FC-AE 网络的航空电子架构以满足下一代战斗机的要求。这项研究的必要性在于当前基于 MIL STD 1553B 进行数据通信的联合航空电子架构和基于 STANAG 3350 的模拟视频分发网络的缺点。MIL STD -1553B 的最大速度限制为 1 Mbit/秒,STANAG 3350 的最大视频分辨率为 760 x 575 像素。当前的航空电子架构使用多种协议来实现数据、视频和控制功能。可以使用单个冗余商用现货网络来代替使用多种网络协议,这可以节省空间、成本和重量,同时增加网络容量。重量对于航空电子设备来说尤其重要,每架战斗机容纳其航空电子设备和互连系统的空间都有限。在下一代战斗机中,新功能需求的数量有所增加,需要在重量预算约束内实现。建议的解决方案是基于 FC-AE 网络的先进集成航空电子设备和统一互连系统。
Difficult to grow III-V on Si with high crystal quality due to mismatch in lattice constant & thermal expansion coefficient (CTE), and polarity Lattice constant mismatch: Crystal configuration (atom spacing) is different and higher for most of III-V compounds than Si CTE: Si and III-V compounds expand/contract differently Polarity: Si is non-polar, while III-V is polar