化石燃料(煤炭,天然气和石油)在过去一个世纪一直是我们的主要能源供应,占每年消耗的总能源的80%以上。如此持续的巨大消费量导致快速耗尽,同时导致许多环境问题并改变我们的生态系统。为了应对实现长期可持续社会的这些挑战,电气化是有希望的,可以促进广泛实施可再生能源,例如太阳能和风能。为此,便携式电源存储(EES)系统至关重要,它存储从可再生能源收获的电力并将其提供给能量消耗扇区,例如,便携式电子,电动汽车(EV)和智能电网。在这方面,锂离子电池(LIB)是迄今为止最成功的EES设备在便携式电子产品中起主要作用的EES设备。此外,由于运输消耗了近三分之一的总能量,因此运输电气很重要。1目前,LIB正在渗透EV市场,而全球各国政府正在为EV销售设定各种计划。在这种情况下,迫切需要更好的电池,因为最先进的液体在
Laura M de Kort,Masoud Lazemi,Alessandro Longo,Valerio Gulino,Henrik P Rodenburg等。使用X-Ray Raman谱学解密了纳米固体电解质中界面诱导的高LI和Na离子电导率的起源。高级能源材料,2024,10.1002/aenm.202303381。hal-04411755
I型干扰素(IFN-I)代表一组以抗病毒活性和免疫调节功能而闻名的多效性细胞因子。许多研究已经公布了IFN-I在大脑中的关键作用,从而影响了各种神经系统过程和疾病。在这次迷你审查中,我重点介绍了有关IFN-I对脑衰老,阿尔茨海默氏病(AD)进展和中枢神经系统(CNS)稳态的影响的最新发现。IFN-I对脑健康和疾病的多面影响阐明了免疫反应与神经系统过程之间的复杂相互作用。是CGAS-sting- IFN-I轴,它广泛参与了大脑衰老和各种形式的神经变性。了解IFN-I及其相关途径在中枢神经系统中的复杂作用不仅提高了我们对脑健康和疾病的理解,而且还为开发干预措施提供了改变神经变性过程并预防与年龄相关的认知能力下降的机会。
摘要:我们已经对聚(3-己基噻吩)(P3HT)(P3HT)和[6,6] - 苯基C61丁基甲基甲基酯酯活性层活性层活性层散装散装量量形的理论入射光子到电流(IPCE)作用光谱。通过玻璃基材/SIO 2/ITO/PEDOT的结构的二维光学模型:PSS/P3HT:PCBM(1:1)/CA/AL,该设备的光响应已计算出针对不同的光活性层和CA层的厚度,从而可以找到最大的设备构造,从而可以在最大程度上效率地效果,从而获得了最大的效果效果,从而可以在上位效果,从而获得最大的效果。已经计算出电场强度,能量耗散,发电速率和IPCE,以提高设备的性能。有限元方法在1.5 AM照明的100 mW/cm 2的入射强度下执行模拟。发现,最佳结构是通过180 nm光活性层和5 nm Ca层厚度实现的。
摘要目的:我们旨在确定干扰素伽马1B是否可以防止机械通气患者的医院获得的肺炎。方法:在一个多中心,安慰剂对照,随机试验中,在11家欧洲医院进行,我们随机分配了重病的成年人,其中一个或多个急性器官故障,在机械通气下以接收Interferon GAMMA-1B(每48 h每48 h,从1至9天开始)或安慰剂(遵循同一地位)。主要结果是第28天医院获得的肺炎或全因死亡率的复合。计划的样本量为200个,在入学50和100例患者后进行了临时安全分析。结果:在第二次安全分析中,该研究对干扰素伽马1B的潜在损害进行了停用,并于2022年6月完成了随访。在109名随机患者中(中位年龄,57(41-66)年; 37(33.9%)妇女;全部包括在法国),108名(99%)完成了试验。纳入二十八天,干扰素 - 伽马组的55名参与者中有26个(47.3%)中有26个(47.3%),安慰剂组的53个参与者中有16个(30.2%)中有16例(30.2%)患有医院经济上的肺炎或死亡(调整后的危害比率(HR)1.76,95%置信区(CI)0.94-3.29; p = 0.008)。在干扰素 - 伽马组的55名参与者中有24名(43.6%)中有24例严重不良事件,安慰剂组中的54个(31.5%)中有17个(p = 0.19)。在探索性分析中,我们发现医院获得的肺炎在CCL17对干扰素伽马治疗的反应降低的患者中发育。此外,由于对干扰素伽马1B治疗的安全问题,该试验早日停产。结论:在机械通风的急性器官衰竭患者中,与安慰剂相比,干扰素γ-1B的治疗并不能显着降低医院获得性肺炎或死亡的发生率。关键词:重症监护,医院获得的肺炎,干扰素 - 伽马,免疫疗法,免疫抑制
随着深度学习的快速发展,注意机制在脑电图(EEG)信号分析中变得必不可少,从而显着增强了大脑计算机界面(BCI)应用。本文对传统和变压器的注意机制,其嵌入策略及其在基于EEG的BCI中的应用进行了全面综述,并特别强调了多模式数据融合。通过捕获跨时间,频率和空间通道的脑电图变化,注意机制可改善特征提取,表示学习和模型鲁棒性。这些方法可以广泛地分为传统的注意机制,该机制通常与卷积和经常性网络集成,以及基于变压器的多头自我注意力,在捕获长期依赖性方面表现出色。除了单模式分析之外,注意机制还增强了多模式的脑电图应用,从而促进了脑电图与其他生理或感觉数据之间的有效融合。最后,我们讨论了基于注意力的脑电图建模中的现有挑战和新兴趋势,并强调了推进BCI技术的未来方向。本综述旨在为寻求利用注意力机制的研究人员提供宝贵的见解,以改善脑电图的解释和应用。
摘要。大脑计算机界面(BCIS)是使人仅使用神经活动与机器进行交互的系统。这种相互作用对于用户而言可能是不直接的,因此培训方法是为了增加一个人的理解,信心和动机,这将在并行提高系统性能。要清楚地解决BCI用户培训协议设计中的当前问题,在这里分为介绍期和BCI相互作用期。首先,必须将介绍期(BCI交互之前)视为与用户培训的BCI交互同样重要。为了支持这一主张,对论文的审查表明,BCI绩效可以取决于此类入门期内提出的方法。为了使其设计标准化,人类计算机相互作用(HCI)的文献已调整为BCI上下文。第二,在用户BCI交互期间,接口可以采用大量的形式(2D,3D,大小,颜色等)和模态(视觉,听觉或触觉等)无需遵循任何设计标准或准则。也就是说,探索对神经活动的感知阶段的研究表明,可以从对某些物体的简单观察结果触发运动神经元,并取决于对象的属性(大小,位置等)神经反应可能差异很大。令人惊讶的是,在BCI背景下未研究感知阶段的影响。对BCI的介绍都不一致,以及可变的界面设计使得繁殖实验很困难,预测其结果并比较它们之间的结果。为了解决这些问题,提出了用于用户培训的协议设计标准化。
界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
通过导体驱动的电子电流可以通过著名的库仑阻力效应诱导另一个导体中的电流。在移动的流体和导体之间的接口上已经报道了类似的现象,但是它们的解释仍然难以捉摸。在这里,我们利用了非平衡的Keldysh框架,开发了一种相互交织的流体和电子流的量子机械理论。我们预测,全球中性液体可以在其流动的实心壁中产生电子电流。这种流体动力学库仑阻力均来自液体电荷波动与固体电荷载体之间的库仑相互作用,以及由实心声子介导的液体电子相互作用。我们根据固体的电子和语音特性以及液体的介电响应明确地得出了库仑阻力电流,这一结果与液态涂纸界面上的最新实验一致。此外,我们表明当前一代抵消了从液体到固体的动量转移,从而通过量子反馈机制降低了流体动力摩擦系数。我们的结果为控制量子水平控制纳米级液体流量提供了路线图,并提出了设计具有低流体动力摩擦的材料的策略。
