将木质纤维素底物微生物转化为燃料和平台化学中间体为建立可行的生物经济提供了一条可持续的途径。然而,这种方法面临着一系列关键的技术、经济和可持续性障碍,包括:底物利用不充分、木质纤维素水解产物和/或最终产品毒性、产品回收效率低下、培养要求不兼容以及生产率指标不足。开发具有适合在工艺相关条件下高产率转化木质纤维素底物天然特性的生产宿主,提供了一种绕过上述障碍并加速微生物生物催化剂部署开发的方法。酪丁酸梭菌是一种天然的短链脂肪酸生产菌,它表现出一系列特性,使其成为转化木质纤维素底物的理想候选菌,因此是微生物生产各种羧酸衍生产品套件的有希望的宿主。本文回顾了该细菌作为工业微生物细胞工厂的开发的最新进展和未来方向,重点是利用木质纤维素底物和代谢工程方法。
2020 年 7 月 2 日 Brian Barry 先生 总裁兼首席执行官 Vitality Health Plan of California, Inc. 18000 Studebaker, Suite 960 Cerritos, CA 90703 事由:关于立即对联邦医疗保险优势计划 - 处方药计划合同编号 H1426 实施中级制裁(暂停注册)的通知。 尊敬的 Barry 先生, 根据 42 CFR §§ 422.756 和 423.756,医疗保险和医疗补助服务中心 (CMS) 特此通知 Vitality Health Plan of California, Inc.(“Vitality”)决定立即对以下联邦医疗保险优势计划 - 处方药计划 (MA-PD) 合同实施中级制裁:H1426。此项中间制裁将暂停 Vitality 招收 Medicare 受益人的能力(42 CFR §§ 422.750(a)(1) 和 423.750(a)(1))。根据 42 CFR §§ 422.756(c)(2) 和 423.756(c)(2),CMS 将立即实施中间制裁,自 2020 年 7 月 2 日美国东部时间晚上 11:59 起生效。不合规摘要 2020 年 6 月 30 日,加利福尼亚州管理医疗保健部 (DMHC) 提交了“停止接受新投保者的命令”,其中指出 Vitality 未能遵守加利福尼亚州根据诺克斯-基恩法案规定的某些财务要求。因此,DMHC 表示,“自 2020 年 7 月 2 日起,[Vitality] 应立即停止提供合同或接受任何未与 Vitality 签订合同的新注册者或订户的新申请。” 根据 42 CFR §§ 422.504(a)(1) 和 423.505(b)(2),与 CMS 签订合同提供 MA-PD 合同的组织必须同意接受新注册,如 42 CFR 第 422 和 423 部分 B 分部所述。由于 Vitality 在其与加利福尼亚州的许可下无权接受新注册,因此它不符合 CMS 的合同要求。立即实施中级制裁的法律依据 由于 DMHC 的命令,Vitality 不再实质上满足
由于处于早期阶段,NISQ 设备在硬件和架构方面高度多样化。领先的 QC 供应商(包括 IBM、Rigetti、Google、IonQ 等)采用了截然不同的方法来构建硬件量子比特。为了支持他们的量子比特选择,供应商还选择了不同的指令集和硬件通信拓扑。此外,由于量子比特控制和制造方面存在根本性挑战,QC 系统的硬件噪声也存在差异。虽然这种多样性本身对高效和可移植的应用程序执行构成了挑战,但现在可构建的 QC 硬件与引人注目的现实世界应用程序的资源需求之间也存在巨大差距。许多有趣的应用程序需要具有数千个量子比特和高精度操作的大型系统,但目前的硬件只有不到 100 个量子比特,并且容易出错。为了完全实现实用而强大的 QC,必须采用计算机架构技术和软件工具链来缩小各种算法和设备之间的算法到设备资源差距。为此,我们的文章 2 对量子计算机系统的跨平台特性进行了最深入的探索,并提供了全栈、基准测试驱动的硬件软件分析。从计算机架构的角度来看待量子计算机,我们评估了重要的硬件设计决策(量子比特类型、系统大小、连接性、噪声)、硬件软件接口(门集选择)和软件优化,以解决基本的设计问题:量子计算机系统应该向软件公开哪些指令?指令是否应该在跨不同量子比特类型的设备独立 ISA 中统一?硬件连接性和噪声特性如何影响基准测试性能?编译器可以克服硬件限制吗?为了回答这些问题,我们使用真实系统测量来评估一套量子计算机
在没有错误的情况下,根据量子力学处理信息的机器原则上可以解决超出任何传统计算机计算能力的问题。实际上,可扩展的通用量子计算机必须将纠错和容错作为其操作不可或缺的一部分,而这对底层量子硬件的要求可能在未来几年内都无法实现 [1]。因此,在当前嘈杂的中等规模量子 (NISQ) 设备时代 [2],该领域的大部分努力都集中在看似不那么雄心勃勃的挑战上。位居榜首的是模拟量子模拟器的开发,这里将其定义为无需纠错的设备,但在建模复杂量子系统等任务上仍有潜力超越传统计算机 [3,4]。最近的例子包括使用捕获离子 [5 – 7]、里德堡原子 [8,9] 和超导量子比特 [10,11] 来模拟大(> 50)自旋系统中的相变和其他现象。这大致是目前在传统计算机上无法进行数值建模的规模。量子模拟通常需要访问相互作用的多体系统的高度纠缠态。人们早就知道,这样的系统也倾向于支持量子混沌,因为它们的时间演化对扰动高度敏感[12-14]。这表明了与量子模拟相关的两个不同的复杂性概念,一个与量子态的性质有关,另一个与系统动力学的性质有关。纠缠态之所以复杂,是因为预测粒子间相关性所需的信息会随着系统规模的扩大而呈指数增长,而混沌动力学之所以复杂,是因为预测量子轨迹所需的信息会随着时间的推移呈指数增长[15]。两者都会增加整体的复杂性和脆弱性
摘要 — 捕获离子 (TI) 是构建嘈杂中型量子 (NISQ) 硬件的主要候选者。TI 量子比特与超导量子比特等其他技术相比具有根本优势,包括高量子比特质量、相干性和连通性。然而,当前的 TI 系统规模较小,只有 5-20 个量子比特,并且通常使用单个陷阱架构,这在可扩展性方面存在根本限制。为了向下一个重要里程碑 50-100 量子比特 TI 设备迈进,提出了一种称为量子电荷耦合器件 (QCCD) 的模块化架构。在基于 QCCD 的 TI 设备中,小陷阱通过离子穿梭连接。虽然已经展示了此类设备的基本硬件组件,但构建 50-100 量子比特系统具有挑战性,因为陷阱尺寸、通信拓扑和门实现的设计可能性范围很广,并且需要满足不同的应用资源要求。为了实现具有 50-100 个量子位的基于 QCCD 的 TI 系统,我们进行了广泛的应用驱动架构研究,评估了陷阱大小、通信拓扑和操作实现方法等关键设计选择。为了开展研究,我们构建了一个设计工具流,该工具流以 QCCD 架构的参数作为输入,以及一组应用程序和真实的硬件性能模型。我们的工具流将应用程序映射到目标设备上并模拟其执行以计算应用程序运行时间、可靠性和设备噪声率等指标。使用六个应用程序和几个硬件设计点,我们表明陷阱大小和通信拓扑选择可以将应用程序可靠性影响多达三个数量级。微架构门实现选择将可靠性影响另一个数量级。通过这些研究,我们提供了具体的建议来调整这些选择,以实现高度可靠和高性能的应用程序执行。随着业界和学术界努力构建具有 50-100 个量子比特的 TI 设备,我们的见解有可能在不久的将来影响 QC 硬件并加速实用 QC 系统的进程。
已知的研究非微扰状态下量子场论的唯一方法是使用对离散时空格子进行调控的数值计算。然而,这类计算往往面临着指数级的信噪比挑战,即使使用下一代经典计算,关键的物理研究也无法维持。这里提出了一种方法,通过构建优化的插值算子,可以使用在嘈杂的中规模量子时代硬件上进行小规模量子计算的输出来加速更大规模的经典场论计算。该方法是在 1 + 1 维 Schwinger 模型的背景下实现和研究的,这是一种简单的场论,与核物理和粒子物理的标准模型具有关键特征。
患者年龄 一般而言,确诊时年龄≤18个月的患者预后比年龄>18个月的患者更好。请注意,患有转移性疾病且没有MYCN扩增或节段性染色体异常、年龄为12-18个月的患者目前接受高风险研究,尽管治疗强度降低了。 肿瘤分期 在新的国际神经母细胞瘤风险组 (INRG) 分期系统下,局部病变分期为 L1 或 L2,具体取决于是否存在图像定义的风险因素 (IDRF)。有关更多信息,请参阅附录 1。 MYCN 扩增 MYCN 扩增仍然是神经母细胞瘤的一个关键风险因素,因此由认可的实验室确定 MYCN 状态至关重要。请注意,MYCN 增益并不等同于 MYCN 扩增。肿瘤组织学 对于年龄 > 18 个月且患有局限性 (L2) 疾病的患者,与未分化或低分化肿瘤患者相比,具有国际神经母细胞瘤病理学分类 (INPC) 分化性疾病的患者的治疗费用将减少。在诊断时应对这些患者进行大量活检,以使组织学具有代表性。两个亚组的初始化疗方法可以相同。 染色体异常 越来越多的证据表明染色体异常(例如,参见 Schleiermacher 2011 和 2012)对预后有影响,尤其是节段性 (SCA) 的存在与数值染色体异常 (NCA) 相比。建议将所有神经母细胞瘤病例的组织送至纽卡斯尔参考实验室进行 SCA/NCA 分析。有关更多信息,请参阅附录 3 危及生命的症状有关更多信息,请参阅附录 4。在治疗脊柱内扩散的神经母细胞瘤时应特别小心。
摘要:分子腔内成键的氢原子经常经历隧穿或热传递过程,这些过程在各种物理现象中发挥着重要作用。此类传递可能需要也可能不需要中间态。此类瞬时状态的存在通常通过间接方式确定,而尚未实现对它们的直接可视化,主要是因为它们在平衡条件下的浓度可以忽略不计。在这里,我们使用密度泛函理论计算和扫描隧道显微镜 (STM) 图像模拟来预测,在专门设计的电压增强高传输速率非平衡条件下,吸附在 Ag(111) 表面的无金属萘菁分子中两氢转移过程的顺式中间体将在双 C 形态的复合图像中可见。在理论预测的指导下,在调整扫描温度和偏压下,STM 实验实现了顺式中间体的直接可视化。这项工作展示了一种直接可视化难以捉摸的中间体的实用方法,增强了对氢原子量子动力学的理解。
德国芒斯特大学的一项研究监测了两组20至30岁之间的大脑活动。 一组由20位播放音乐至少15年的音乐家组成。 另一组由13位非音乐家组成。 研究人员观看了他们的大脑反应,每个参与者都听了钢琴音乐的录音。 在听录音时,音乐家在处理听觉信号的大脑区域中表现出25%的活动。 尽管音乐来自钢琴,但无论弹奏钢琴,小提琴还是其他乐器,所有音乐家的响应水平都更高。德国芒斯特大学的一项研究监测了两组20至30岁之间的大脑活动。一组由20位播放音乐至少15年的音乐家组成。另一组由13位非音乐家组成。研究人员观看了他们的大脑反应,每个参与者都听了钢琴音乐的录音。在听录音时,音乐家在处理听觉信号的大脑区域中表现出25%的活动。尽管音乐来自钢琴,但无论弹奏钢琴,小提琴还是其他乐器,所有音乐家的响应水平都更高。
