我们很高兴邀请您参加国际间隙肺部疾病研讨会,该研讨会将于2024年9月26日至27日在意大利罗马的NH Vittorio Veneto酒店举行。
抽象的背景定量间质异常(QIA)是自动化计算机断层扫描(CT)发现早期实质性肺部疾病的发现,与肺功能较差,运动能力降低,增加疗程症状和死亡相关。与QIA相关的代谢组扰动尚不清楚。我们试图鉴定吸烟者中与QIA相关的血浆代谢产物。我们还试图确定QIA和肺气肿之间的共享和区分代谢组学特征,这是另一种与吸烟有关的晚期放射学异常。在COPD队列的遗传流行病学中的928例和当前吸烟者中的方法,我们使用自动化的局部密度直方图方法测量了QIA和肺气肿,并使用液态色谱 - 质谱法(Metabolon)从血浆样品中产生了来自等离子体样品的代谢物谱。我们使用多变量的线性回归模型评估了代谢物水平与QIA之间的关联,该模型根据年龄,性别,体重指数,吸烟状态,包装年和吸入的皮质类固醇使用,并在本杰米尼 - 霍赫伯格(Benjamini – Hochberg)的false-hochberg false发现率p值≤0.0.05。使用针对这些协变量调整的多项式回归模型,我们评估了代谢物水平与以下CT表型之间的关联:QIA-PREDOMONINENS,EMPHYSEMA-PREDOMINALS-促剂,良好的促进性,预先主导和既不优势。使用化合生剂进行富集分析。结果,我们发现85种代谢物与QIA显着相关,而烟酸和烟酰胺,组氨酸,淀粉,淀粉和蔗糖,吡啶胺,磷脂酰胆碱,溶血磷脂和鞘磷脂素途径过高。这些包括参与炎症和免疫反应的代谢产物,细胞外基质重塑,表面活性剂和肌肉缓存。在QIA-促剂和肺气肿促性表型之间存在75种代谢物,并且磷脂酰乙醇胺,烟酸和烟酰胺,氨基酰胺,氨基酰胺,精氨酸,精氨酸,蛋白酶,豆氨酸,蛋白酶,碱基,碱性,果碱和胶质酸含量过多。
该研究确定大肠杆菌和肺炎链球菌是AE-NSIP患者中最常见和具有统计学意义的细菌分离株。这些发现与先前研究(例如Seth J. Kligerman等人[1])保持一致,该研究使用培养非依赖性方法记录了NSIP患者的类似病原体。其他报告,例如Hochhegger B等[2],也表现出NSIP患者的阳性培养物,支持细菌在疾病进展中的潜在作用。与其他肺部疾病真正急性事件不同,NSIP中急性加重的发作通常是阴险的[6]。最近,分子培养的独立技术已经确定了下部气道中的复杂微生物物种,在许多呼吸系统疾病中发生的微生物组发生了不同的改变[7,8]。在Sambataro G等[5]中,他们分析了20例使用细菌性肺炎,非特异性间质性肺炎和急性间质性肺炎,使用细菌性肺炎,使用细菌培养物和凝胶培养物和凝胶培养物和凝胶,分析了20例肺部肺部疾病患者的微生物菌群。鉴定了经典的呼吸道病原体(例如,流感嗜血杆菌)和各种以前未经识别或未经认可的生物。
地下沿海沉积物中的微生物群落高度多样,并且在营养循环中起着重要作用。,虽然沙质沉积物中的微生物的主要部分呈足为Epipsammon(附着在沙粒上),但只有一小部分在间质毛孔中繁殖。到目前为止,对这些自由生活微生物群落的组成知之甚少。在这项研究中进行了研究,在沙滩的地下中,我们比较了沉积物中的古细菌和细菌群落结构,以及应用16S rRNA基因测序的相应毛孔水。我们发现,根据孔隙空间的不同,自由生活原核生物的比例仅为0.2-2.3%。间质微生物群落显示出一个小的重叠,附着的分数为4-7%,并且包含在孔道中仅发现的75-81%ASV的独特组成。它们比各自的沉积物级分更多样化,并且显示出更高的古细菌比。古细菌主要隶属于Dpann Superphylum的纳米章,相对丰富的间隙群落相对丰富。细菌分数包括与候选门辐射(CPR)有关的几种物种。已知两种原核生物谱系都有小细胞尺寸,包括尚未尚未识别的代谢功能的尚未培养的物种。我们的发现得到了对相邻潮汐平坦的调查,显示出类似的趋势。因此,我们的结果表明在沿海沉积物的地下存在不同的间质微生物群落。这种尚未培养的纳米章的自然富集和心肺复苏群的成员为靶向元基因组分析甚至隔离这些群体成员提供了进一步代谢表征的机会。
特异性抗体通常被认为是互斥的,有极少数例外。应在患者的临床表现中仔细评估两种或多种肌炎特异性抗体的发生。请参阅ARUP咨询炎症性肌病 - 肌炎主题,以获取有关肌炎的更多信息。
免疫检查点抑制剂 (ICI) 是一类免疫治疗药物,它为多种恶性肿瘤(包括对传统疗法有耐药性或处于晚期的恶性肿瘤)提供了新的治疗选择,从而改变了癌症治疗。目前,它们单独使用或与其他治疗方法联合用于黑色素瘤、肺癌、肾细胞癌、膀胱癌和霍奇金淋巴瘤患者 [1,2]。ICI 是单克隆抗体,靶向 T 细胞、其他免疫细胞和肿瘤细胞上表达的抑制性受体。它们对被认为是适应性免疫反应重要突破点(或检查点)的分子具有抑制作用,如细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA- 4)、程序性细胞死亡蛋白 1 (PD-1) 和程序性死亡配体 1 (PDL-1) [2]。CTLA-4 在 T 细胞上上调并与共刺激 CD28 配体分子竞争,导致抑制信号和 T 细胞停滞。 CTLA-4 阻断剂(例如
连续血糖监测 (CGM) 设备根据其预期用途(专业 CGM 或个人 CGM)获得 FDA 批准。专业用途 CGM 由医疗保健专业人员办公室所有,用于管理糖尿病,类似于 Holter 监测器用于管理心脏病的方式。CGM 在患者进行正常日常生活活动时记录和存储至少 72 小时、最多 7 至 14 天的数据。专业用途 CGM 可以以“盲法”模式收集数据,即患者在佩戴设备期间无法查看数据,或者可以实时显示数据。无论是使用实时模式还是盲法模式,临床医生都可以使用收集的数据来评估当前的血糖状态和变化,进行对话以奠定基础并促进对某些糖尿病管理主题的教育,并确定如何优化治疗,无论是通过行为改变还是通过调整所用药物或处方剂量来实现更有针对性的血糖 (Grunberger 等人,2021)。目前,有两种类型的 CGM 系统技术可供个人使用:rtCGM 和 isCGM,后者过去被称为“闪光”CGM。rtCGM 系统会自动将数据传输到糖尿病患者的接收器和/或智能手机,而 isCGM 系统则要求患者将接收器和/或智能手机“刷”到传感器附近以获取当前和历史传感器葡萄糖数据(因此,根据检查/记录水平的频率而断断续续)。直到最近,这些技术之间的一个关键区别是增加了主动警报/警报的保障,可以警告糖尿病患者即将发生或即将发生的血糖事件,例如低血糖和高血糖。新的 isCGM 系统提供可选警报,当葡萄糖水平低于或高于编程阈值时会警告用户;但是,这些技术的当前迭代不会警告用户预测的低或高血糖水平。rtCGM 和 isCGM 技术均可作为独立设备使用。但是,只有当前的 rtCGM 系统可以连接到传感器增强型胰岛素泵或自动胰岛素输送系统 (Grunberger 等人,2021)。此外,FDA 将连续血糖监测仪 (CGM) 分为治疗性或非治疗性,以及辅助性或非辅助性。治疗性或非辅助性 CGM 可用于做出治疗决策,而无需使用独立的血糖仪 (BGM) 来确认检测结果。非治疗性或辅助性 CGM 要求用户在做出治疗决策之前使用 BGM 验证 CGM 上显示的血糖水平或趋势。现已批准的 CGM 包括适用于儿科的设备以及具有更先进软件、更频繁的血糖水平测量或更复杂的警报系统的设备。最初的设备每 5 至 10 分钟测量一次间质葡萄糖,并存储数据以供临床医生下载和回顾性评估。目前可用的设备测量间质葡萄糖的间隔范围为每 1 至 2 分钟至 5 分钟,大多数提供
(欧盟委员会); Bjorn Heidecke(德勤,德国)迈克尔·科贝茨基(Michael Kobetsky) (澳大利亚国立大学,澳大利亚)瓦齐·利戈梅卡(马拉维)路易斯·玛丽亚·门德斯(阿根廷)潘德·奥卡·库苏马瓦德尼(印度尼西亚) Mensah Otoo先生(加纳) TP Australia(TP Australia & Associates LLP,印度); El Hadramy Oubeid(毛里塔尼亚) Raffaele Petruzzi(奥地利维也纳经济大学奥地利和国际税法研究所 WU 转让定价中心);克劳迪娅·佩珀(巴西)戴维·鲁尔(德国) Jolanda Schenk(荷兰壳牌公司)鲁奇卡·夏尔马(印度) Stig Sollund(挪威独立顾问)特鲁德·斯泰因内斯·斯诺(挪威) Jose Troy Gonzalez(CPA-厄瓜多尔罗巴利诺);莫妮克·范·赫克森 (Simmons & Simmons,荷兰)马科斯·瓦拉多 (巴西热图利奥·巴尔加斯基金会);熊燕(中国)。 Carlos Perez-Gomez Serrano(毕马威,墨西哥)和 Anthony Munanda(ATAF)的早期参与也得到了认可。衷心感谢秘书处,特别是 Ilka Ritter 和 Michael Lennard 在这项工作中提供的协助。
我们采用了 Torigoe 和 Ono [ J. Appl. Phys. , 121 , 215103 (2017)] 的方法来研究直拉硅中氧化物沉淀过程中 β 的动力学,β 是每个沉淀氧原子发射的自间隙子数量。为此,我们使用了具有埋入式高 B 掺杂外延层的 pp 外延晶片,并在 950 °C 下进行和未进行热预处理进行退火。根据结果,我们得出结论,在没有热预处理的氧化物沉淀的初始阶段,β 非常高,然后下降到较低的值。在 800 °C 下进行 2 小时的热预处理后,β 的初始值会稍低,然后也会下降。如果在 950 °C 热处理之前进行成核退火,β 值从一开始就很低。所有这些结果都通过实验证实了我们之前发表的理论预测。这项研究还表明,晶体拉制过程会影响初始 β 值,因为生长的氧化物沉淀物核可以通过空位吸收来降低其应变。因此,在氧化物沉淀物成核时晶体冷却过程中的高空位过饱和会导致初始 β 值略低。© 2024 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/ad670d ]