在过去的几年中,在光激发的发色团中,增强的跨系统交叉(EISC)1-3的过程经常被利用,这些传播的发色团经常被用作进入有机彩色团的高旋转状态的一种手段。示例包括二酰亚胺(PDI)4的三胞胎状态或各种发色团 - 自由基化合物的四重奏或五重状态。5 - 10,除了具有基本兴趣之外,后者在新兴的分子旋转基质中的应用也可能具有有希望的特性。例如,已经表明,PDI - 自由基化合物的分子四重奏状态可以用作多级别自旋Qubits,即qudits,用于量子信息科学中的应用。11,12共价连接的发色团中的三重态产量增加 - 稳定的自由基系统对于像沉重的无原子无原子感官感官的应用也有吸引力 - 三胞胎 - 三重三元光子上转化或光动力疗法。13 - 16
摘要:激子和光子之间的强相互作用会导致激子 - 两极子的形成,与其成分相比,具有完全不同的特性。通过将材料合并到电磁场紧密限制的光腔中,产生了极化子。在过去的几年中,偏光态的放松已被证明可以实现一种新型的能量转移事件,该事件的长度比典型的fo rster rster半径大大大。但是,这种能量转移的重要性取决于短寿命的极化状态有效衰减到可以执行光化学过程的分子局部状态(例如电荷转移或三重态状态)的能力。在这里,我们在强耦合方面定量地研究了极性子与红细胞B的三胞胎状态之间的相互作用。我们使用速率方程模型分析了实验数据,主要采用角度分辨反射率和激发测量值。我们表明,从极化子到三重态的跨系统交叉的速率取决于激发极性状态的能量比对。此外,可以证明,在强耦合方案中,可以大大提高间间穿越速率,直到接近北极星辐射衰减的速率。■引言激子 - 果龙是由于激子与电磁场之间的强烈相互作用而产生的。1,2鉴于从极化元素到分子局部态在分子光物理学/化学和有机电子中提供的机会,我们希望对从这项研究获得的这种相互作用的定量理解将有助于开发Polariton Empowered设备。
d = donor = sensi:zer a = accector = anchihilator isc = Intersystem跨度ttet = triplet-triplet能量传递tta = triplet-triplet-achihila:在TTET和TTA上通过电子交换通过Dexter Energy Energy Energy转移机制发生。sensi&zed an&stokes延迟荧光
有机发光二极管研究面临的挑战之一是利用电致发光过程中不可避免产生的三线态激子来提高器件效率。其中一种方法是通过热激活延迟荧光,即单线态激子向上转换为单线态,使其辐射松弛的过程。这一现象的发现引发了对能够有效利用这一机制的新材料的探索。从理论的角度来看,这需要能够估计候选分子光物理中涉及的各种过程的速率,例如系统间窜改、反向系统间窜改、荧光和磷光。我们在此提出一种方法,能够在单一框架内计算所有这些速率并预测新分子的光物理。我们将该方法应用于两个 TADF 分子,并表明结果与其他理论方法和实验结果相比更具优势。最后,我们使用动力学模型来展示计算速率如何协同作用产生不同的光物理行为。
窄带发射多谐振热激活延迟荧光 (MR-TADF) 发射器是一种有前途的解决方案,无需使用光学滤光片即可实现当前行业针对蓝色的色彩标准 Rec. BT.2020-2,旨在实现高效有机发光二极管 (OLED)。然而,它们的长三线态寿命(主要受其缓慢的反向系统间穿越速率影响)会对器件稳定性产生不利影响。在本研究中,设计并合成了螺旋 MR-TADF 发射器 (f-DOABNA)。由于其𝝅 -离域结构,f-DOABNA 拥有较小的单重态-三重态间隙𝚫 E ST ,同时显示出异常快的反向系统间穿越速率常数k RISC ,高达 2 × 10 6 s − 1 ,以及非常高的光致发光量子产率𝚽 PL ,在溶液和掺杂薄膜中均超过 90%。以 f-DOABNA 为发射极的 OLED 在 445 nm 处实现了窄深蓝色发射(半峰全宽为 24 nm),与国际照明委员会 (CIE) 坐标 (0.150, 0.041) 相关,并显示出较高的最大外部量子效率 EQE max ,约为 20%。
自1996年首次实验性鉴定以来,弗兰克等人1,1羟基磺酰基辐射(HOSO)的分子特性和反应性已进行了广泛的研究,已对2-11进行了广泛的研究,以理解其作为硫磺相关过程中关键中间的作用分子核。12,由于其在大气化学中的潜在作用,这种激进分子在过去几年中也引起了人们的关注。2,4,7-10,13–26 HOSO在240-330 nm的激发后可以从SO 2产生,然后通过Intersystem Crossing(R1)的最低激发三胞胎状态的种群。13,25这个高反应性3因此,在气相(R2)中可以从水中的水中抽象出H原子,产生HOSO和OH激进,在空气水界面的部分水溶剂化中,这一过程。23,25
三个备用控制系统通道的每个轴上的积分器提供电子配平、均衡和同步。当主通道接通时,备用控制系统伺服命令与这些积分器的主伺服命令同步。这些输入到备用控制系统表决器中,即使控制传感器输出和系统间控制规则存在差异,它们仍会跟踪主通道伺服命令。在从主控制系统切换到备用控制系统期间,必须将备用控制系统与主控制系统持续同步,以尽量减少控制面瞬变。如果主系统发生故障或飞行员命令脱离,就会发生切换。同步网络的带宽约为 2.5 赫兹
摘要:有机半导体中的三重态激发态通常是光学的黑暗和长寿的,因为它们具有自旋孔向单线基态的旋转过渡,因此在轻度收获的应用中阻碍了过程。此外,三胞胎通常会对系统造成损害,因为它们可以使反应性单线氧的形成敏感。尽管有这些不利的特征,但存在我们可以利用三胞胎状态的机制,这构成了本综述的范围。开始对三胞胎状态问题的简短探索,我们继续阐明有机材料中三重态利用的主要机制:1。磷光(pH),2。热活化的延迟荧光(TADF)和3。三重态 - 三胞胎歼灭(TTA)。在每个部分中,我们都会揭示其工作原则,强调其广泛的应用程序,并讨论其局限性和观点。我们特别注意在有机发光二极管(OLEDS)中使用这些机制,因为OLEDS是有机半导体的最繁荣的商业应用。本综述旨在为读者提供见解和机会,以与有机半导体的光物理特性和设备物理学进行研究,尤其是在利用三胞胎状态的潜力方面。关键字:磷光,TADF,TTA,三胞胎状态,交叉Intersystem cropsing■简介
自然界中的许多现象由多个基本过程组成。如果我们可以定量地预测各个过程的所有速率常数,我们可以全面预测和理解各种现象。在这里,我们报告说,可以使用多共振热激活的延迟荧光(MR - TADF)定量预测所有相关的速率常数和量子收率,而无需进行实验。MR - TADF是出色的发射器,因为它的发射狭窄,高发光效率和化学稳定性,但它们具有一个缺点:慢速逆向间间交叉(RISC),从而导致效率滚动和降低设备寿命。在这里,我们显示了一种用于定量获得所有速率常数和量子收率的量子化学计算方法。这项研究揭示了一种改善RISC的策略,而不会损害其他重要因素:辐射衰减率常数,光致发光量子产量和发射宽度。我们的方法可以在广泛的研究场中应用,从而对包括激子的时间演变提供了全面的理解。