结果和讨论:在螃蟹扰动的土壤中,丰富和罕见的亚社区的组成和多样性发生了明显改变。同时存在网络分析揭示了螃蟹生物扰动实质上改变了稀有细菌的相互作用模式,而其对丰富细菌的影响相对较小。此外,我们发现丰富的亚群落的组装过程主要受随机过程的影响,而稀有的亚社区组装集体则由随机和确定性过程集体塑造。总而言之,我们的研究阐明了螃蟹生物扰动介导丰富和罕见的亚社区的独特组装过程的机制,并强调了在评估潮流湿地的生态功能时考虑稀有细菌的重要性。
用于低空遥感的 RPAS 技术和用于增强成像的微型传感器的蓬勃发展,导致了海洋生态应用的增加。然而,带有可见电磁波谱传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本的 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作了生物牡蛎礁的超高分辨率地图。结果表明,具有可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩石礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行瞄准飞行来缓解。
低空遥感用 RPAS 技术和增强成像用微型传感器的蓬勃发展,推动了海洋生态应用的增加。然而,可见电磁波谱中传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作生物牡蛎礁的超高分辨率地图。结果表明,可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行目标飞行来缓解。
表4进一步凸显了每种情况下实现生物多样性净增益所需的栖息地区域的差异,这是由于所采用的方法而不同的。在非常低的独特性栖息地(在情景2中)创建这些潮间带的栖息地(在场景2中)会产生更多的生物多样性单位,而不是将这些潮间带的栖息地增强到良好的状态(在情景1中),由于与“良好”状态和划分基线相关的困难和时间风险,因此存在的困难和时间风险,虽然在现场开发影响之前创建相同的栖息地会在方案3中相对于其他两个方案3产生最多的单位,因为与创建相关的风险降低了。
• 永久改变海岸线和水深(海底地貌的深度和轮廓),从而造成死区并永久改变下游的沉积和水交换。这些变化将对构成整个拉姆萨尔湿地生态特征的关键过程和组成部分产生不利影响,并且无法缓解或抵消; • 直接导致潮间带泥滩和迁徙物种觅食区的消失; • 增加整个拉姆萨尔湿地的沉积和浊度; • 增加污染物和外来物种;以及 • 对潮汐制度造成不利影响,潮间带泥滩、海草和其他植被(例如红树林)赖以生存的潮汐制度为迁徙物种和其他受保护动物提供了合适的觅食栖息地和食物网。
本综述使用海洋双壳类crassostrea gigas来突出生活在动态潮间环境中的物种中的氧化还原反应和控制系统。潮间带每天面临和季节性环境变异性,包括温度,氧气,盐度和营养变化。增加人为压力可以将污染物和病原体作为其他应激源带来。令人惊讶的是,C。Gigas对大多数此类挑战表现出令人印象深刻的适应性。我们探讨了ROS的产生,抗氧化剂保护,氧化还原信号传导和代谢调整如何阐明氧化还原生物学在恶劣条件下如何支持牡蛎生存。评论提供了(i)Metazoan共享的氧化还原传感过程的简要摘要; (ii)概述C. gigas潮间带栖息地的独特特征以及该物种作为模型有机体的适用性; (iii)对C. gigas的氧化还原生物学的见解,包括ROS源,信号通路,ROS扫除系统和含硫醇的蛋白质;以及(IV)在双壳类研究中不发达的热门主题的示例,将氧化还原生物学与免疫代谢,生理和发育联系起来。鉴于其对环境变化的可塑性,C。Gigas是研究氧化还原生物学在适应恶劣栖息地的作用的宝贵模型,有可能为海洋和比较生物化学和生理学的基础研究提供新颖的见解。
在沿码头A入口的现场南端,新的栖息地空间将出现。今天,Stone Riprap提供了不受欢迎且无效的海岸线边缘。建造后,这部分的海岸线将包括在潮间带的阶梯露台上的种植,这将使海洋生物带到现场。一个水上平台将使用光栅来允许观看栖息地空间,同时还可以让光穿透水,这是近海上水中栖息地成功的关键。生态改善将为条纹鲈鱼,sc,蓝色鱼,牡蛎,龙虾,蓝蟹,环嘴海鸥和大蓝鹭提供栖息地。露台上最低的步骤会整合潮汐池和潮间带,有时会低于潮汐和上面。低沼泽种植构成上层露台。
在第1级SFRA中使用:如第2.1节所述,与2017年Adur Eastern分支模型相比,2017年Adur气候变化建模的范围更大。该模型还涵盖了阿杜河的西部分支。为了保持一致性,这些输出已在1级SFRA中向前进行,并已用于绘制阿伦河上游流域内未来的河流风险。但是,应该指出的是,阿伦河上的亨菲尔德(Henfield)的下游是2022年Adur潮间带模型的结果。此模型代表最新的气候变化津贴,但更准确地代表了河流的这段时间,因为它是更新的模型。这些结果尚未在Henfield的上游地区使用,因为已经采用了一种保守的方法,因此使用了更大尺寸的气候变化量。这包括2017年Adur气候变化模型的输出。此外,2022年的Adur潮间带模型不包括Adur河东部和西部分支的完全代表。
基金会物种,例如东部牡蛎(Crassostrea virginica),可提供许多生态功能,并在沿海环境中提供无数的生态系统服务,包括作为NERR系统储备中各种生物体的重要栖息地。我们的合作团队同时部署了多种已建立和新兴的方法,以在北卡罗来纳州(NC),南卡罗来纳州(Ni-WB),乔治亚州(SI)和佛罗里达州(GTM)中在北卡罗来纳州(NC),南卡罗来纳州(NI-WB)的储量中进行潮间带牡蛎礁进行采样。