对蛋白质,亚基或其他生物分子之间纳米距离的光学研究一直是数十年来Förster共振能量转移(FRET)显微镜的独家特权。在这项工作中,我们表明Minflux荧光纳米镜检查可直接,线性和吻线精度直接,线性,线性,线性,线性,线性,线性,线性直接,直接,直接,线性地降低到1 angstrom。我们的方法通过量化多肽和蛋白质中的1至10纳米距离来验证。此外,我们可视化了免疫球蛋白亚基的方向,在人类细胞中应用了该方法,并揭示了组氨酸激酶PAS PAS结构域二聚体的特定构型。我们的结果打开了通过直接位置测量在骨内分子尺度上检查接近和相互作用的大门。o
©2023作者。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
摘要。低聚聚乙二醇 (PEG) 链中的振动能量传输可以通过光学振动链带以弹道方式进行,表现出快速而恒定的传输速度和高传输效率,从而提供了将超过 1000 cm -1 的大量能量传输到超过 60 Å 的远距离的方法。我们报告了分子内能量传输时间、链间传输速度和端基冷却速率如何取决于环境的刚性和极性。实验使用端基标记的 PEG 低聚物和二维红外 (2DIR) 光谱进行。弹道能量传输在链的一端通过在约 2100 cm -1 处激发叠氮基部分来启动,并通过探测琥珀酰亚胺酯的羰基拉伸模式在链的另一端记录下来。我们发现环境的刚性(聚苯乙烯 (PS) 基质与极性相似的溶液)不会对能量传输时间和链传输速度产生太大影响。这些结果表明,在弱极性介质中,尽管溶液中存在快速松弛成分,但溶液中发生的动态波动(但在固体基质中基本冻结)并不是链状态失相的主要原因。不同介质中传输时间的相似性表明二级链结构对 PEG 链中的传输影响不大。溶剂极性显著影响分子内传输:极性 DMSO 中的传输效率比非极性 CCl 4 或 PS 中的传输效率小约 1.6 倍。在极性更强的溶剂中,琥珀酰亚胺酯端基的冷却时间缩短,影响等待时间依赖形状,从而影响能量到达报告器的时间。本文分析了从数据中提取能量到达时间的不同方法。观察到的链间传输时间对溶剂极性的依赖性表明存在多个以不同群速度在 PEG 链中传播的波包。1. 简介。
5-C]二元溶剂混合物中的吡啶。主题会议关于光谱法的最新趋势会议,印度泰米尔纳德邦印度理工学院,印度泰米尔纳德邦,2014年6月20日至21日。(选择为最佳口头表现)。5)S.K。Behera , A. Karak and G. Krishnamoorthy, Photophysics of 2-(4'-Amino-2'-hydroxyphenyl)- 1H - imidazo-[4,5-c]pyridine and Its Analogues: Intramolecular Charge Transfer Suprresed by Intramolecular Proton Transfer , 8 th Asian Photochemistry Conference (APC-2014), IISER- Niist(CISR)Trivandrum,喀拉拉邦,在印度Photosciences研究学会的主持下,2014年11月9日至13日,印度喀拉拉邦Kovalam。6)S。K. Behera和G. Krishnamoorthy,分子内电荷转移,由分子内质子转移,研究结论,由学生学术委员会(SAB)博士理事会(SAB)组织,IIT Guwahati,IIT Guwahati,23Rd-26th,2015年3月23日。7) S. K. Behera and G. Krishnamoorthy, Role of Protic Solvents in the Twisted Intramolecular Charge Transfer of 2-(4'- N , N -dimethylaminophenyl)imidazo[4,5-c]pyridine: A Relay Proton Transfer , ChemConvene, Department Chemistry, IIT Guwahati, 8 th April -2015.8)S。K. Behera和G. Krishnamoorthy,2-(4'- N,N,N--二甲基氨基)苯基胺[4,5-C]吡啶在墨西哥cuc虫-7-ril cavity,19 Crsi National Cavity in Cucurbit-7-ril cavity,CRSI NSC-NSC-116年7月7日,北部的BBENF,2016年7月7日。 013,印度西孟加拉邦。(被选为最佳口头表现)9)S。K. Behera,新的2-(2'-羟基苯基)苯咪唑衍生物的新2-(2'-羟基苯基)衍生物:一项合并的实验和理论研究,印度国家国民发展科学与技术研讨会,印度科学会议局,印度科学会议局,布巴内斯瓦尔分会,Kiit Chaplion,Kiit University,Kiit University,Kiit University,Kiit University,Kiit University,12-13,2016年12月12日,2016年12月。
2020 年 2 月 16 日 — – 分子和细胞之间的力。– 细胞之间的力36,39。分子内力也得到了非常成功的测量40。许多协议可以...
氢键相互作用影响无数化学系统的性质。本文简要回顾了氢键在化学碳捕获中的重要性。然后,考虑到文献中的实验结果,我们假设循环 CO 2 容量可能会增强,这可能发生在某些热再生 CO 2 结合有机分子中,这些分子有利于 CO 2 吸收时的分子内氢键。这种效应类似于螯合效应,可能源于与分子内氢键对内部旋转自由度的限制相关的熵惩罚。我们进行了简单的计算来估计模型系统中这种影响的大小。然后,我们概述了一种更彻底的实验和计算方法。如果存在这种效应,预计在设计下一代碳捕获化合物方面应用有限。
摘要:轻度收获和分子内能量漏斗是自然光合作用的基本过程。可以通过研究能够模仿自然系统的人工轻度收获天线的研究来解密调节此类过程效率的主要结构,动态和光学特性的全面知识。树枝状聚合物是一些探索最多的人工轻度收获分子。然而,它们必须是良好的和高度分支的共轭结构,从而产生分子内能梯度,以保证有效和单向能量转移。在此,我们探索了负责在大型,复杂的聚(苯基 - 乙烯烯)树突中型中高度有效的能量漏斗的不同机制的贡献,其建筑的设计尤其旨在使最初吸收的光子朝着空间上吸收的光子降低其表面,从而避免了环境,从而使最初吸收的光子朝着空间上的局部局限于环境,从而避免了环境。为此,通过使用非绝热激发态分子动力学来模拟非辐射光诱导的能量弛豫和重新分布。以这种方式,定义了先前由时间分辨光谱法报道的激子迁移的两个可能的直接和间接途径。我们的结果刺激了在基于分子的光子设备中应用的新合成树状聚合物的未来发展,在这些光子设备中,可以通过在不同分子内能传递途径之间的详细平衡之间的变化来预测光发射效率的增强。■简介
摘要:能够选择性地功能化强脂肪族 C-H 键的反应开辟了新的合成途径,可以快速增加分子复杂性并扩大化学空间。特别有价值的是可以通过催化剂控制将位点选择性导向特定 C-H 键的反应。本文我们描述了羧酸底物中未活化一级 C-H 键的催化位点和立体选择性 γ-内酯化。该系统依赖于手性 Mn 催化剂,该催化剂通过羧酸盐与金属中心结合,活化过氧化氢水溶液以在温和条件下促进分子内内酯化。该系统表现出高位点选择性,即使在 α- 和 β- 碳上存在本质上较弱且先验更具反应性的二级和三级键的情况下,也能氧化未活化的一级 γ-C-H 键。对于带有非等效 γ-C-H 键的底物,已经揭示了控制位点选择性的因素。最值得注意的是,通过操纵催化剂的绝对手性,可以以前所未有的非对映选择性实现刚性环状和双环羧酸的双二甲基结构单元中甲基基团的 γ -内酯化。这种控制已成功应用于樟脑酸、樟脑酸、酮庚酸和异酮庚酸等天然产物的后期内酯化。DFT 分析指出,反弹型机理是由分子内 1,7-HAT 从结合底物的一级 γ -C − H 键到高反应性的 Mn IV -氧自由基中间体引发的,从而传递碳自由基,该碳自由基通过羧酸盐转移迅速内酯化。分子内动力学氘同位素效应和 18 O 标记实验为这种机理图景提供了强有力的支持。■ 简介
化学交联能够快速识别 RNA-蛋白质和 RNA-核酸分子间和分子内相互作用。然而,目前尚无方法能够位点特异性和共价交联 RNA 内两个用户定义的位点。在这里,我们开发了 RNA-CLAMP,它能够位点特异性和酶促交联(夹紧)RNA 内两个选定的鸟嘌呤残基。分子内夹紧会破坏正常的 RNA 功能,而随后对交联剂进行光裂解会恢复活性。我们使用 RNA-CLAMP 通过光裂解交联剂夹紧 CRISPR-Cas9 基因编辑系统的单向导 RNA (sgRNA) 内的两个茎环,完全抑制编辑。可见光照射会裂解交联剂并以高时空分辨率恢复基因编辑。设计两种对不同波长的光有响应的光裂解接头,可以在哺乳动物细胞中实现基因编辑的多路复用光激活。这种光激活的 CRISPR-Cas9 基因编辑平台受益于无法检测的背景活动,提供激活波长的选择,并具有多路复用功能。