在数值约束优化的背景下,我们研究了通过增强拉格朗日方法处理约束的随机算法,特别是进化策略。在这些方法中,原始约束问题被转变为无约束问题,优化函数是增强拉格朗日,其参数在优化过程中进行调整。然而,使用增强拉格朗日会破坏进化策略的一个核心不变性,即对目标函数严格递增变换的不变性。尽管如此,我们形式化地认为,具有增强拉格朗日约束处理的进化策略应该保持对目标函数严格递增仿射变换和约束缩放的不变性——严格递增变换的一个子类。我们表明这种不变性对于这些算法的线性收敛非常重要,并表明这两个属性是如何联系在一起的。
原子和固态自旋集合是有前途的量子技术平台,但实际架构无法解析单个自旋。不可解析的自旋集合的状态必须遵循置换不变性条件,但目前尚不清楚生成一般置换不变 (PI) 状态的方法。在这项工作中,我们开发了一种系统策略来生成任意 PI 状态。我们的协议首先涉及用工程耗散填充特定的有效角动量状态,然后通过改进的 Law-Eberly 方案创建叠加。我们说明了如何通过现实的能级结构和相互作用来设计所需的耗散。我们还讨论了可能限制实际状态生成效率的情况,并提出了脉冲耗散策略来解决这些问题。我们的协议解锁了以前无法访问的自旋集合状态,这可能有利于量子技术,例如更强大的量子存储器。
现在考虑和谐强制强制稳态输入和输出,作为u(t)= r(s)e st形式的谐波输入,以及y(t)= y(s)e ST的谐波输出。允许拉普拉斯变量复杂,s∈C,这些假定的解决方案可以代表谐波和指数函数。将假定的溶液替换为微分方程,并从两侧分解e st,从而在拉普拉斯域中表示微分方程。
我们考虑使用语言模型(LMS)生成水晶材料的问题。关键步骤是将3D晶体结构转换为1D序列,以通过LMS处理。先前的研究使用了晶体学信息框架(CIF)文件流,该文件无法确保SE(3)和周期性不变性,并且可能不会导致给定晶体结构的唯一序列表示。在这里,我们提出了一种新的方法,即Mat2Seq,以应对这一挑战。mat2Seq将3D晶体结构转换为1D序列,并确保以单个唯一的序列表示相同晶体的不同数学描述,从而可以实现SE(3)和周期性不变性。实验结果表明,与先前的方法相比,MAT2SEQ具有MAT2SEQ在晶体结构产生中的表现有希望的。
本文介绍了Koopman Control家族(KCF),这是一个用于建模通用(不一定是控制效果)离散时间非线性控制系统的数学框架,目的是为在具有输入的系统中使用基于Koopman的方法提供可靠的理论基础。我们证明,KCF的概念捕获了非线性控制系统在(潜在无限维)功能空间上的行为。通过在KCF下采用广义的子空间不变性概念,我们为有限维模型建立了通用形式,该模型涵盖了常用的线性,双线性和线性切换模型作为特定实例。如果在KCF下子空间不变的情况下,我们提出了一种以一般形式近似模型的方法,并使用不变性接近概念来表征模型的准确性。我们结束了讨论所提出的框架如何自然地借给控制系统的数据驱动建模。
疾病本质上无处不在,在光子学中已广泛探索,以了解光扩散和定位的基本原理,以及在功能谐振器和随机激光器中的应用。最近,对拓扑光子学中疾病的研究导致了拓扑安德森绝缘子的实现,其特征是出乎意料的疾病引起的相变。然而,到目前为止,观察到的光子拓扑结构剂仅限于时间反向对称性破坏系统。在这里,我们提出并实现了光子量子旋转霍尔拓扑拓扑拓制孔,而无需打破时间反转对称性。通过理论有效的狄拉克·哈密顿(Dirac Hamiltonian),批量传播的数值分析以及对批量和边缘传输的实验检查,全面证实了疾病诱导的拓扑相变。我们提供了令人信服的证据,证明了螺旋边缘模式的单向传播和稳健的运输,这是非平凡的时间反转不变拓扑的关键特征。此外,我们展示了无序诱导的束转向,突出了障碍作为操纵无磁性系统中光传播的新自由度的潜力。我们的工作不仅为观察独特的拓扑光子相铺平了道路,而且还通过疾病的利用来提出潜在的设备应用。
高斯流程(GPS)[1]是机器学习中的一种多功能工具,但对它们的构成诸如阳性,单调性或物理约束之类的约束是具有挑战性的[2]。过去的作品已考虑将GPS作为差异方程的解决方案[3],时间和光谱重建问题[4],或通过线性操作员注入域特异性约束[5]。其他作品与非线性函数相结合的GP输出[6,7],通过约束边际可能性[8]或铸造线性约束作为截短的多变量高斯分布的条件期望,将输出结合到正值[9]。在这项工作中,我们旨在发现一个积极价值的天文光谱的潜在空间。在过去的降低谱图[10,11,12]的作品中,[13]独特地纳入了非阴性约束。,我们通过将其外部限制到正值来扩展高斯过程潜在变量模型(GPLVM)[14]。天文光谱的幅度不是本质的物理特性,不应在潜在空间中反映。我们引入了规模不变,并表明它会导致更好的重建。
摘要。最近对新型的线性变换的几何形状构成了新的兴趣。这激发了对此类不变的研究,以在根系,反射群,谎言组和谎言的背景下进行某种类型的几何转换:Coxeter转换。我们使用高性能计算对所有Coxeter转换进行了所有Coxeter转换的详尽计算,以选择简单根的基础并计算其不变性。此计算代数范式生成一个数据集,然后可以使用来自数据科学的技术(例如智能和无监督的机器学习)进行开采。在本文中,我们关注神经网络分类和主成分分析。由于输出(不变性)是由选择根源的选择以及Coxeter元素中相应反射的置换顺序完全确定的,因此我们期望在映射中进行巨大的退化。这为机器学习提供了完美的设置,实际上,我们看到数据集可以被机器学习以非常高的精度。本文是使用Cli杀性代数在实验数学方面进行的泵送研究,表明此类cli效应代数数据集可以适合机器学习,并阐明了这些新颖的几何学和其他知名几何不变的关系,并引起了分析结果。