摘要:由于传感器材料和光学波导等实用应用,有机发光的固体材料引起了很多关注。我们以前已经报道过,逆类型日志甲观在晶体中表现出强大的发射,而不会引起聚集引起的淬火。但是,排放颜色仅限于绿色。为了调整发射颜色,在这项工作中,我们新合成具有缩短的π-共轭长度或极性取代基的逆类型日志甲乙烯,并研究了其在溶液和晶体中的荧光性能。晶体根据分子结构表现出各种发射颜色,从蓝色,绿色,黄色到红色。除了缩短的π连接长度和分子内电荷转移特征外,还通过分子间相互作用(例如CH-π相互作用)诱导了晶体的发射颜色变化。
我们考虑在马尔可夫决策过程中学习,在马尔可夫决策过程中,我们没有明确地赋予重新功能,但是我们可以在这里遵守专家,以展示我们想学习的任务。此设置在应用程序(例如驾驶任务)中很有用,很难写下明确的奖励功能,以准确地指定应如何交易不同的desiderata。我们认为专家试图最大程度地发挥奖励功能,该奖励功能可作为已知功能的线性组合,并给出了一种学习专家所展示的任务的算法。我们的al-gorithm基于使用“逆增强学习”来试图恢复未知的奖励功能。我们表明,我们的算法终止了少数迭代,即使我们可能永远无法恢复专家的奖励功能,算法的策略也将达到与专家接近的绩效,在此,在此,相对于Expt exptt的未知奖励函数,在这里可以衡量。
我们提出了intincavatar,这是一种新的方法,是一种从单眼视频中照亮的,包括几何形状,反照率,材料和环境的内在特性。基于人类的神经渲染的最新进展已使来自单眼视频的穿着人类的高质量几何形状和外观重建。然而,这些方法烘烤了内在特性,例如反照率,材料和环境照明成一个单一的纠缠神经表示。另一方面,只有少数作品可以解决估计单眼视频中穿衣人类的几何形状和分离的外观特性的问题。,由于通过学习的MLP对次要阴影效应的近似值,他们通常会获得有限的质量和分离。在这项工作中,我们建议通过蒙特卡罗射线跟踪明确地对次级阴影效应进行建模。我们将衣服的人体的渲染过程建模为体积散射过程,并将射线跟踪与人体的作用相结合。我们的方法可以从单眼视频中恢复服装人类的高质量地理,反照率,材料和照明特性,而无需使用地面真相材料进行监督的预训练。fur-hoverore,因为我们明确地对体积散射过程和射线追踪进行了建模,所以我们的模型自然而然地形成了一般 -
摘要:加强学习的最新进步使得培养足球代理人,以模仿人类球员的行为。但是,现有方法成功复制现实的玩家行为仍然具有挑战性。实际上,代理商表现出诸如在球周围聚集或过早射击之类的行为。此问题的一个原因在于奖励功能总是为某些行动分配巨大的奖励,例如得分目标,无论情况如何,这种情况都会使代理人偏向高奖励行动。在这项研究中,我们将相对位置奖励和拍摄的位置重量纳入用于增强学习的奖励功能中。相对位置奖励,源自球员,球和目标的位置,是使用逆强化学习在真正的足球游戏数据集中估算的。拍摄的位置重量类似地基于这些游戏中观察到的实际射击位置。通过在真正的足球游戏中获得的数据集中进行实验,我们证明了相对位置奖励有助于使代理商的行为与人类玩家的行为更加紧密地保持一致。
图2:从有或不包含强度定律方程的五个模型的预测孔隙率值的比较:(a)CNN,(b)knn,(c)lstm,(d)RF和(e)xgboost。将强度定律方程组合为输入的图可显着提高预测的准确性,从而与真实的孔隙率值更紧密地对齐。
理解和建模照明效应是计算机视觉和图形中的基本任务。经典的基于物理的渲染(PBR)准确模拟了光线传输,但依赖于精确的场景表示形式 - 说明3D几何,高质量的材料和照明条件 - 在现实世界中通常是不切实际的。因此,我们介绍了一种iffusion r Enderer,这是一种神经方法,该神经方法解决了整体框架内的反向和正向渲染的双重问题。杠杆功能强大的视频扩散模型先验,逆装置模型准确地估算了现实世界视频中的G-buffers,为图像编辑任务提供了一个接口,并为渲染模型提供了培训数据。相反,我们的重新设计模型从G-buffers产生了无明确的光传输模拟的影像图像。具体来说,我们首先训练一个视频扩散模型,用于构成综合数据的反向渲染,该模型可以很好地推广到现实世界的视频,并使我们能够自动化不同标签的真实世界视频。我们
我们设计了一种称为“增强”的新迭代算法,用于解决一般的优化问题。此算法参数化解决方案搜索规则,并使用强化学习(RL)算法类似于增强算法来更新参数。为了更深入地了解基于RL的方法,我们表明,增强OPT基本上解决了给定优化问题的随机版本,并且在标准假设下,搜索规则参数几乎可以肯定地收敛到本地最佳值。实验表明,增强-OPT优先于其他优化方法,例如梯度下降,遗传算法和粒子群优化,它可以从局部最佳溶液中逃脱到其鲁棒性到对初始值的选择。有了严格的推导,我们正式介绍了使用强化学习来处理反问题的使用。通过为动作选择规则选择特定的概率模型,我们还可以将我们的方法连接到Tikhonov正则化和迭代正则化的常规方法。我们在部分微分方程中采用非线性积分方程和参数识别问题作为示例,以说明如何将强化学习应用于求解非线性逆问题。数值实验强调了增强-OPT的强劲性能,以及其量化错误估计不确定性并确定缺乏解决方案稳定性和唯一性的逆问题的多个解决方案的能力。