摘要 - 计划和控制机器人手机操纵的能力受到了几个问题的挑战,包括系统的先验知识以及随着不同机器人手甚至掌握实例而变化的复杂物理学。最直接的手动操纵模型之一是逆雅各布,它可以直接从所需的内对象运动映射到所需的手动执行器控制。但是,获得没有复杂手动系统模型的没有复杂手动系统模型的这种反向雅各布人通常是impeasible。我们提出了一种使用基于粒子滤波器的估计方案自我识别的逆雅各布人来控制手工操作的方法,该方案利用了非隔离的手在自我识别运动过程中维持被动稳定的掌握的能力。此方法不需要对特定手动系统的先验知识,并且可以通过小型探索动作来学习系统的逆雅各布。我们的系统紧密近似近似雅各布,可用于成功执行一系列对象的操纵任务。通过在耶鲁大学模型上进行广泛的实验,我们表明所提出的系统可以提供准确的亚毫米级精度操纵,并且基于雅各布的逆控制器可以支持高达900Hz的实时操纵控制。
摘要。扩散模型已被证明是解决一般反问题的强大先验。大多数现有的基于扩散模型的In-verse问题求解器(DIS)采用插件方法来指导采样轨迹,以投影或梯度指导。虽然有效,但这些方法通常需要数百个采样步骤,在推理时间和重建质量之间构成了困境。在这项工作中,我们尝试将推理步骤的边界推向1-2 NFE,同时仍保持高重建质量。为了实现这一目标,我们提议利用扩散模型的预处理蒸馏,即一致性模型,作为数据先前的数据。实现少量步骤指南的关键是在一致性模型的采样过程中执行两种类型的约束:通过优化使用控制和硬测量约束的软测量约束。支持单步重建和多步进,该框架进一步提供了一种通过额外的计算成本来交易图像质量的方法。在可比较的NFE中,我们的方法在基于扩散的反问题解决方面实现了新的最新方法,展示了为现实世界应用使用基于先前的基于基于先前的In-verse问题求解器的重要潜力。代码可在以下网址找到:https://github.com/biomed-ai-lab-u-michgan/cosign。
摘要:大约四十年前,它基于逆模型的传递函数,基于逆模型的传递函数。实际上实现了传输函数的倒数,将过滤器添加到其上,以消除高频干扰信号。此基于反向模型的干扰观察者(IMBDO)设计的关键步骤是使用适当参数的滤波器选择。本文提出了一个基于直接模型(DMBDO)的干扰观察者,并且可以无需任何其他过滤器而工作。它简化了设计和实现的控制器代码。IMBDO和DMBDO的离散时间实现是通过简单的基于Internet的伺服系统在非真实时间控制环境中比较的。检查了非均等抽样的效果。
摘要。光子综合电路(图片)吸引了人们对高数据速率通信和高性能计算的有希望的平台。对于图片,带有兼容材料,紧凑型足迹,高温和复杂功能的光子设备是必要的构件。设计优化为目标应用程序和要求实施此类设备至关重要。在这方面,逆设计方法(包括迭代优化和深度神经网络)与传统的基于基于仿真的试验和错误优化方法相比具有显着优势。我们概述了集成光子设备的逆设计的最新进度。呈现和讨论逆设计方法的原理和过程,然后摘要在不同集成光子材料平台中用于特定集成光子设备所采用的方法。最后,讨论了将来的应用程序和逆设计方法的制造约束的主题。
大多数昆虫都能在其生命周期的关键阶段(例如繁殖)中改变气味景观,以便与其同伴进行交流。他们在附近环境中释放信息素,挥发性化合物由具有异常特异性和敏感性的同一物种的昆虫检测到。有效的信息素检测是害虫管理的有趣杠杆。使用信息素传感器对害虫的精确和早期检测是在出没之前的害虫管理策略。在本文中,我们开发了一个生物学知情的逆问题框架,该框架利用信息素传感器网络中的时间信号来构建昆虫存在图。使用种群动力学PDE残差,通过特定惩罚的平均值在反问题中引入了先前的生物学知识。我们将在简化的玩具模型中对生物信息的惩罚进行基准使用其他正规化术语,例如Tikhonov,Lasso或复合惩罚。我们使用classical比较标准,例如目标重建误差或在害虫散布的jaccard距离。,但我们还使用了更多的任务标准,例如推理过程中的信息传感器数量。最后,在秋季军虫(Spodoptera Frugiperda)的农业景观中,在现实的有害生物侵扰的背景下解决了反问题。
RNA设计显示了RNA在各种生物过程中的关键作用驱动的合成生物学和治疗剂中越来越多的应用。 一个基本的挑战是找到满足结构约束的功能性RNA序列,称为反折叠问题。 已经出现了基于二级结构的计算方法来解决此问题。 然而,由于数据的稀缺,非唯一的结构序列映射和RNA构象的灵活性,直接从3D结构设计RNA序列仍然具有挑战性。 在这项研究中,我们提出了RECODI↵一种用于RNA逆折叠的生成二次模型,可以学习给定3D主链结构的RNA序列的条件分布。 我们的模型由基于图神经网络的结构模块和基于变压器的序列模块组成,该模块将随机序列转换为所需的序列。 通过调整采样重量,我们的模型允许序列恢复和多样性之间进行交易,以探索更多的候选者。 我们将基于RNA聚类的测试集使用DI↵Cut-O↵S序列或结构相似性。 我们的模型在序列恢复中的表现优于基准,序列相似性分裂的平均相对改善为11%,结构相似性分裂的平均相对提高为16%。 此外,Ribodi↵在各种RNA长度类别和RNA类型中的表现始终如一。 我们还施加了内部折叠,以验证生成的序列是否可以折叠到给定的3D RNA骨架中。RNA设计显示了RNA在各种生物过程中的关键作用驱动的合成生物学和治疗剂中越来越多的应用。一个基本的挑战是找到满足结构约束的功能性RNA序列,称为反折叠问题。已经出现了基于二级结构的计算方法来解决此问题。然而,由于数据的稀缺,非唯一的结构序列映射和RNA构象的灵活性,直接从3D结构设计RNA序列仍然具有挑战性。在这项研究中,我们提出了RECODI↵一种用于RNA逆折叠的生成二次模型,可以学习给定3D主链结构的RNA序列的条件分布。我们的模型由基于图神经网络的结构模块和基于变压器的序列模块组成,该模块将随机序列转换为所需的序列。通过调整采样重量,我们的模型允许序列恢复和多样性之间进行交易,以探索更多的候选者。我们将基于RNA聚类的测试集使用DI↵Cut-O↵S序列或结构相似性。我们的模型在序列恢复中的表现优于基准,序列相似性分裂的平均相对改善为11%,结构相似性分裂的平均相对提高为16%。此外,Ribodi↵在各种RNA长度类别和RNA类型中的表现始终如一。我们还施加了内部折叠,以验证生成的序列是否可以折叠到给定的3D RNA骨架中。我们的方法可能是RNA设计的强大工具,可以探索庞大的序列空间并为3D结构约束发现新颖的解决方案。
我们考虑了基于培养基刺激后响应波的测量值的粘性声材料的定量重建(例如,大量模量,密度)的逆问题。数值重建是通过迭代最小化算法进行的。首先,我们研究了算法在衰减模型不确定性方面的鲁棒性,也就是说,当使用不同的衰减模型分别用于模拟合成观察数据和反转时。其次,要处理由域周围墙边界产生的多个反射的数据集,我们使用复杂的频率进行反转,并表明它提供了一个强大的框架,可以减轻多种反射的界限。为了说明算法的效率,我们对超声成像实验的数值模拟进行了数值模拟,以重建包含高对比度特性的合成乳房样品。我们在两个和三个维度上进行实验,后者也可以证明大规模构造中的数值可行性。
图2:从有或不包含强度定律方程的五个模型的预测孔隙率值的比较:(a)CNN,(b)knn,(c)lstm,(d)RF和(e)xgboost。将强度定律方程组合为输入的图可显着提高预测的准确性,从而与真实的孔隙率值更紧密地对齐。
1应用科学教师,乌克兰天主教大学,乌克兰,乌克兰2号,人类绩效系2-教育生理学,康复和绩效,西弗吉尼亚州医学院,西弗吉尼亚大学,西弗吉尼亚州,美国摩根镇,美国,美国神经科学系,西弗吉尼亚大学,西弗吉尼亚大学,西弗吉尼亚州。西弗吉尼亚大学,美国西弗吉尼亚州西弗吉尼亚大学医学,美国5机械和航空工程,本杰明·M·斯塔勒·斯塔特勒工程和矿产资源学院,西弗吉尼亚大学,摩根镇,西弗吉尼亚州,美国,美国6号生物医学工程系,本杰明·M·斯塔勒工程学院
摘要:光子时间晶体是现代光学物理学中一种新型的光子系统,导致具有新属性的设备。但是,到目前为止,由于时间晶体结构和拓扑特性之间的复杂关系,设计具有特定拓扑状态的光子时间晶体仍然是一个挑战。在这里,我们提出了一种基于学习的方法来应对这一挑战。在带有时间反演对称性的光子时间晶体中,每一个由动量间隙隔开的频带都可以具有非零量化的浆果相。我们表明,神经网络可以学习时间晶体结构和浆果相之间的关系,然后根据给定的浆果相特性确定光子时间晶体的晶体结构。我们的工作显示了一种将机器学习应用于时变光学系统的逆设计的新方法,并具有潜在的扩展到其他字段,例如随时间变化的声音设备。