外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
Science Arts&Métiers(SAM)是一个开放访问存储库,收集了艺术与Métiers技术研究所研究人员的工作,并在可能的情况下可以在网络上自由使用。
图 4:a) Ge 15 Te 85 玻璃在 105 °C 下退火一段时间后进行的电阻率上扫描测量得出的虚拟温度 𝑇𝑇 𝑓𝑓 𝜌𝜌 的演变。𝑇𝑇 𝑓𝑓 𝜌𝜌 数据与 TNM-AG 模型(黑线)精确拟合,并长时间向退火温度 105 °C 收敛,从而证实了稳定性。b) 将在 105 °C 恒温保持期间获得的电阻率数据(浅蓝色点)与从 𝑇𝑇 𝑓𝑓 𝜌𝜌(红色圆圈)和 TNM-AG 模型(黑线)计算出的电阻率值进行比较(a)。实验电阻率数据与玻璃松弛模型的预测结果非常吻合。请注意,初始 𝑇𝑇 𝑓𝑓 𝜌𝜌 低于图 2 所示的 𝑇𝑇 𝑓𝑓 𝐻𝐻。这是由于在 vdP 样品上沉积覆盖层期间向硫族化物引入了热量。
摘要锚定分布的方法(MAD)是一种贝叶斯反转的方法点值)和全局属性(例如使用多类型和多尺度数据的空间异质领域的平均值和变量图参数)。MAD的软件实现存在于C ++和C#中以导入数据,执行远期模型模拟的集合,并对给定应用程序进行计算可能性和后验分布的基本后处理。本文介绍了已构建的r套件锚定distr,该锚定为为此方法提供基于R的环境。尤其是,AnchoredDistr利用统计功能和广泛使用R语言,为MAD软件提供了一系列后处理功能。提供了两个随机水文地质学的示例,以突出显示MAD应用程序的包装功能,以推断本地参数的锚定分布(例如透射率的点值)以及全局参数(例如液压电导率的空间随机函数的平均值)。
摘要:基于密度功能理论(DFT)和波函数分析,紫外和可见的分光光度计(UV-VIS)光谱和1-Meso的Raman光谱以及通过手性纳米矩阵的手性分离获得的1-Meso和1-RAC。通过过渡密度矩阵(TDM)和电荷密度差(CDD)图研究了1-MESO和1-RAC的电子激发特性。基于基于赫希菲尔德分区(IGMH)的非独立梯度模型,讨论了分子间相互作用。使用静电电势(ESP)研究了1-MESO和1-RAC与外部环境的相互作用,并根据外部磁场下的磁诱导电流研究了1-MESO和1-RAC的电子定位度。通过1-RAC的手性分离,两个对映异构体,1-(p,p)和1-(m,m)。通过分析1-Meso,1-Meso,1-(P,P)和1-(P)和1-(M,M),过渡电动偶极矩(TEDM)和过渡磁性二极管矩(TMDM)的电子圆二色(ECD)光谱来揭示分子的电磁相互作用。发现,由于结构的反转,1-(p,p)和1-(m,m)具有相反的手性特性。
摘要。生成模型允许创建高度现实的人造样品,从而在医学成像中开放了有希望的应用。在这项工作中,我们提出了一种基于多阶段编码器的方法,以将生成对抗网络(GAN)的发电机倒入高分子胸部X光片。这可以直接访问其隐式形成的潜在空间,使生成模型更容易被研究人员访问,并使其能够将生成技术应用于实际患者的图像。我们研究了此嵌入的各种应用程序,包括图像压缩,编码数据集中的分离,引导图像ma-nipulation以及创建程式化样品的创建。我们发现,这种类型的GAN反转是胸部X光片建模领域的一个有希望的研究方向,并为将现实的X射线样品合成与放射学图像分析结合起来开辟了新的方法。
我们提出了一种方法,以解决从新一代共享内存NUMA架构的出现中得出的可编程性问题。为此,我们采用了密集的矩阵因子化和矩阵反转(DMFI)作为用例,并且我们针对两种现代体系结构(AMD Rome和Huawei Kunpeng 920),它们表现出了可配置的Numa拓扑。我们的方法论通过为DMFI提出多域的实现以及混合任务和循环级并行化来追求各个不同的NUMA配置的性能可移植性,以配置多线程执行,以在核心到达核心绑定,从而利用核心固定型绑定,并以较小的代码进行限制。此外,我们还介绍了DMFI多域实现的概括,该实现几乎支持当前和未来体系结构中的任何NUMA拓扑。我们对三个代表性密集的线性代数操作的两个目标架构进行的实验验证了该提案,揭示了有关调整代码及其执行以改善数据访问区域的必要性的见解,并报告跨架构以及与固定的数字竞争的构建和内部互动竞争的群体相关联,以实现的范围,以实现距离,以实现范围,以实现距离,以实施欧元,以实现距离,以实施欧元,以实施欧元,以实现距离,以实施欧元,以实现距离,以实现距离,并将其竞争性地融合到脉络上,并涉及群体的范围,以实现距离,并将其与范围内的脉络相关联。 编程。
本报告调查了使用数据驱动方法的使用,即现场倒置和机器学习(FIML),以改善常规的湍流模型,例如Spalart-Allmaras模型和Menter SST K-ω模型。使用有限的训练数据使用基于ML的方法来产生可推广到大量流量配置的校正的关键方面之一是设计适当的“功能”(输入ML模型)。基于FIML方法的指导的模型以分析形式介绍。在本报告的末尾列出了本研究中已经进行了实验的其他功能列表。尽管这些校正中没有使用这些,但它们被包括在当前工作中使用的完整过程。
本论文由 AFIT Scholar 的学生研究生作品免费提供给您。它已被 AFIT Scholar 的授权管理员接受纳入论文和学位论文。有关更多信息,请联系 richard.mansfield@afit.edu。
与疾病相关的人类遗传变异范围从单碱基对替换到兆碱基重复、缺失和重排 1-3 。可以在人类细胞中安装、纠正或补充这些致病变异的基因编辑方法有可能促进对遗传疾病的了解,也可能实现新的治疗方法 4、5。过去十年来,已经开发出几种基于 CRISPR-Cas 系统的哺乳动物细胞基因编辑方法 6,包括核酸酶 7-9 、碱基编辑器 10、11 和主要编辑器 12 ,每种方法都有可能解决一组已知的致病序列变化。CRISPR-Cas 核酸酶(如 Cas9)可用于通过创建导致不受控制的插入/缺失混合的 DSB 来破坏基因。此外,配对的 Cas9 核酸酶策略可以介导长度从约 50 到 > 100,000 个碱基对的基因组 DNA 序列的靶向删除 13 。通过提供线性供体 DNA 序列,可以通过末端连接或同源性定向修复 (HDR) 过程在单个切割位点或成对切割位点之间定向插入新的 DNA 序列 14, 15。单核酸酶和成对核酸酶编辑方法虽然用途广泛,但它们也存在相当大的缺点。DNA 供体敲入伴随着高效的 indel 副产物 16,因为在大多数细胞类型中,HDR 与末端连接过程相比通常效率低下 17, 18。使用成对核酸酶进行靶向删除会产生多种副产物 13, 19,而且缺失的精确位置受到 PAM 可用性的限制。此外,在靶位或脱靶位点的 DSB 可促进大面积缺失 20-22、染色体异常 23、24 和染色体碎裂 25。 DSB 倾向于生成不良副产物和染色体改变的复杂混合物 26 - 28,这在应用基于核酸酶的编辑来操作较大的 DNA 序列时带来了相当大的挑战,特别是在治疗环境中。