后门攻击是对深度神经网络 (DNN) 模型的严重威胁,攻击者使用带有触发器的输入 (例如补丁) 来激活预先植入的恶意行为。触发器反演是识别后门模型和理解嵌入式对抗行为的有效方法。触发器反演的挑战在于构造触发器的方法有很多种。现有方法无法通过做出某些假设或特定于攻击的约束来推广到各种类型的触发器。根本原因是现有工作在制定反演问题时没有考虑触发器的设计空间。这项工作正式定义并分析了注入不同空间的触发器和反演问题。然后,它基于触发器的形式化和从我们的分析中识别出的后门模型的内部行为,提出了一个统一的框架来反演后门触发器。我们的原型 UNICORN 具有通用性,并且能够有效地反转 DNN 中的后门触发器。代码可在 https://github.com/RU-System-Software-and-Security/UNICORN 找到。
o声学和弹性波形反演方法(AEWI)。o双差异声和弹性波反转方法(双差AEWI)。o最小二乘反向时间迁移方法(LSRTM)。•改善微震动成像速度模型的新反转算法。可以使用新方法提高微震态事件的位置精度。•CO 2在包含盐水和烃的多相系统中的存储和捕获:中等规模的实验(1D柱,2D储罐)用于了解气相膨胀的过程,气相膨胀和CO 2迁移以表征CO 2和CO 2和CO 2的影响,而CO 2和CO 2-在地下水含水层中溶解水泄漏。关键发现包括:
本文介绍了一种用于无人机 (UAV) 舰载着陆的 L 1 自适应控制器,该控制器增强了动态逆控制器。三轴和功率补偿器 NDI (非线性动态逆) 控制器作为此架构的基线控制器。内环命令输入是滚转速率、俯仰速率、偏航速率和推力命令。外环命令输入来自制导律,用于校正下滑道。然而,不完善的模型逆和不准确的气动数据可能会导致性能下降,并可能导致舰载着陆失败。L 1 自适应控制器被设计为增强控制器,以解决匹配和不匹配的系统不确定性。通过蒙特卡罗模拟检查了控制器的性能,显示了基于非线性动态逆开发的 L 1 自适应控制方案的有效性。
物理5350。计算物理学简介。(3个学分)计算物理学简介,包括C,C ++和Python中的编程。主题包括普通微分方程,有限的差异和稳定性分析,在超过一个维度中的部分微分方程(例如Schroedinger和扩散方程)的数值解决方案,Krylov空间方法(例如,特征系统溶解器和Matrix Inversion)和Monte Carlo集成。可以涵盖介绍性机器学习和高性能计算方法。编写代码以解决物理和天体物理学选定领域的当前问题。注册要求:建议准备:Python,C,C ++,UNIX。查看类(https://catalog.uconn.edu/course-search/?详细信息和代码= Phys%205350)
一个广泛使用的具有较长非倒置片段的平衡子的重要例子是 X 染色体平衡子 First Multiple 7 (FM7, Merriam 1968),其中在 FM7c 染色体上发现的雌性不育突变 singed, sn X2 因 4E1-11F2 倒位内的双交叉事件而多次丢失 (Miller et al. 2016a)。我们研究了该区域中的几个雌性不育基因和雌性致死基因(例如 ovo 、 snf 、 Sxl 、 otu ; Grammates et al. 2022),并希望实现更好的平衡。由于我们使用的这些基因的等位基因在雄性中可存活且可育,因此我们希望平衡子具有半合子和纯合致死性。为了构建更好的平衡子,我们利用了 CRISPR/Cas9 基因组编辑系统 (Ren 等人 2013;Port 和 Bullock 2016;Benner 和 Oliver 2018),针对 FM7c 的这个大型有问题的倒位 (4E1-11F2,图 1B)。这个片段中的新倒位将更好地抑制此区域内的双交叉事件。为了有目的地设计一个新的倒位,我们想要在 4E1-11F2 片段内创建一个断点,并在 FM7c 上此片段外的另一个区域创建一个断点。我们决定在 FM7c 平衡子染色体中的 cut (ct,在 4E1-11F2 内,图 1B) 处进行倒位,这是一个必需基因,但具有可行的等位基因,以及 white a (wa,在 4D7-1B3 内,图 1B)。为了实现这一目标,我们创建了一个多顺反子 CRISPR gRNA 构建体(Port 和 Bullock 2016;Benner 和 Oliver 2018),其中包含两个针对 wa 第一个内含子的 gRNA(Grammates 等人 2022)和两个针对 ct 和 ct 6 之间区域的 gRNA
原理:由于受激发射,光子在每个步骤中成倍增加,从而产生一束强光子,这些光子是相干的并且沿同一方向运动。因此,光通过受激发射的辐射被放大,称为激光。 活性介质 可以实现粒子数反转的介质称为活性介质。 活性中心 原子被提升到激发态以实现粒子数反转的材料称为活性中心。 1.7 泵浦作用 在介质中实现粒子数反转的过程称为泵浦作用。它是产生激光束的基本要求。 泵浦作用的方法 常用于泵浦作用的方法有: 1. 光泵浦(光子激发) 2. 放电法(电子激发) 3. 直接转换 4. 弹性原子 - 原子间碰撞 1. 光泵浦
Basics of lasers & laser properties: Interaction of light with matter (Absorption, spontaneous and stimulated emissions), Einstein coefficients and light amplification, Einstein coefficients and finding their relationships, Population inversion, Laser rate equations, Three-level, and four-level laser systems, Optical resonators, Axial and transverse modes, Q-switching and mode locking,激光,时间相干性,空间相干性,单色性,方向性,亮度,线宽,激光辐射和可调性的聚焦特性的相干性能。激光的类型:掺杂的激光器(固态激光器):ND Ruby Laser:YAG和ND:玻璃激光器,气体激光器:原子激光器:He-ne Laser;离子激光器:氩激光;分子激光器:二氧化碳激光,氮激光器和准分子激光;液体染料激光;半导体激光器。
本研究利用磁性,重力和磁铁(MT)数据,对伊朗的Sabalan地热区进行了全面的地球物理研究。这些数据已倒入5000米的深度。磁数据反演准确识别出断层或断裂。重力数据反演产生了一个密度模型,以区分侵入性质量,储层和覆盖单元。mt数据反演使用了TM和TE模式的明显电阻率和相位数据。将所得模型与地质横截面进行了比较,以评估其准确性和一致性。地球物理模型的整合为萨巴兰地区提供了全面的地质概念模型。鉴定了热源,热液储存库和潜在的地热流体途径,证明地球物理方法在地下映射中的有效性。基于钻探和地质数据的较新的Sabalan模型的一致性增加了对发现的信心。
(a)Q. Alba基因组组装的HAPA和HAPB之间的结构同步。两个反转超过1 Mb:3染色体上的1.1 Mb反转和染色体上的1.9 Mb反转。35S阵列的位置用红色正方形表示,5S阵列用红色圆圈表示。(b)中期染色体用两对35(绿色)和一对5s(红色)rDNA信号扩散。小型35S信号由白色箭头指示。
气候变化的影响增加了中亚农业和水管理实践的挑战(CA)(CA)(Immerzeel等,2010; Isaev,Kulikov,et al。,2022)。气候变化通过改变季节性降水和温度模式来改变整个地区水资源的分布,并会显着影响水资源(Gulakhmadov等,2020; Isaev,Ermanova等,2022; Luo等,2018)。While precipitation and temperature are critical elements of the water cycle (Chang et al., 2024 ; Ta et al., 2018 ; Wang et al., 2017 ), the frequent occurrence of extreme weather events, such as heatwaves, heavy rainfall, droughts, increasing temperature inversion days accompanied by air pollution, and biotic-abiotic catastrophes are evidence of climate change in this region (Alexander et al., 2006 ; Isaev,Ajikeev等人,2022年,Isaev&Omurzakova,2019年