热带雨林对于全球生物地球化学周期和人类福祉1至关重要,并掩盖了生物多样性的巨大,独特但毫无疑问的储层2,3。随着他们面临的越来越多的压力,包括森林砍伐,生物学入侵和气候变化4-6,改善监测其生物多样性的方法现在是一种紧迫的社会需求。近年来,来自环境样品的分类性DNA片段的扩增和测序7-9(即edna)彻底改变了生物监测。土壤9,10,无脊椎动物散装11,12,海洋和淡水13-15,甚至是空气16-18,通常是为此目的采样的环境矩阵,但提出了几种警告,用于对地面地上生物多样性10进行取样。在这里,我们探索了在森林冠层下方收集的雨水水中包含的DNA的潜力。我们表明,它不仅包含来自无脊椎动物的DNA,而且还包含来自森林冠层21中壮成长的许多植物和脊椎动物的DNA。By sampling rainwash eDNA in two 1ha-plots from a tree plantation, and an old-growth Amazonian forest, we detected 170 plant taxa, mainly trees, 72 vertebrate taxa mainly consisting of mammals, birds, and amphibians, and 313 insect taxa including mosquitoes, ants, beetles, etc.在这两个图中检索的分类组成反映了其不同的干扰状态。雨水埃德娜(Edna)可以被动地被动地收集,并在十天内持续十天,同时提供了当地的多样性情况。这些标准与现场和环境管理的限制兼容,这使该方法有望实现热带雨林的有效,具有成本效益的大规模生物监测,更通常是所有森林檐篷。
这个单一的corɛe参与了the the bod的rigoroƶɛddenƚɛ,the hebodlj͛ɛphljɛiologalyɛljɛƚemɛ和ƚhenthemane和ƚhen比较了动物界的许多物种(脊椎动物和无脊椎动物)中的这些系统。课程分配范围从正式评估到动手解剖和实验室。此外,本课程通过科学演讲和独立研究来重视公开演讲,以增强科学读写能力。学生还将学习阅读和解释已发表的科学文章,以检查物种之间的进化关系,并建立在以后的生物信息学研究中建立的联系。
周围生物膜是海洋和淡水底栖动物中许多草食无脊椎动物的主要资源。它们对于沿海地区的底栖食品网,底物稳定性和生物地球化学过程至关重要。虽然已经使用了在人工底物上生长的纳特菌,混合的藻类群落对生物膜上的无脊椎动物放牧的重要性进行了广泛的研究,但到目前为止,尚无对这些放牧研究创建定义的周围围膜群落的方法。的原因是,许多底栖藻类与形成生物膜非生物抗物部分的细胞外聚合物(EPS)中发生的共同物种相互作用。在这里,我们提出了一种新颖的方法,该方法允许通过使用藻酸盐聚合物作为人工EPS结构来制造定义的单栽培和多种生物膜,可以嵌入藻类培养物。使用共聚焦激光扫描显微镜,我们表明藻酸盐将各种藻类分类嵌入与天然生物膜非常相似的EPS基质中。在放牧的实验中,我们证明了几种常见的淡水食草无脊椎动物可以有效地放牧这些藻酸盐生物膜。As the method is easy to handle, it allows for highly controlled feeding experiments with benthic herbivores to assess, for example, the role of algal biodiver- sity on the ef fi ciency of top-down control, the effects of environmental drivers such as nutrients, salinity, or sea- water acidi fi cation on bio fi lm community structure, and the impacts of herbivory in benthic communities.
唾液酸是九种碳糖,经常在脊椎动物细胞中的细胞表面以及某些类型的无脊椎动物和细菌的细胞中限制胶囊。唾液酸的九个碳主链可以在自然界中进行广泛的酶促修饰,并在C-4/7/8/9处尤其是在C-4/7/8/9处进行O-乙酰化。近年来,o-乙酰化的唾液酸的检测和分析已经采用了乳酸特异性(SOATS)和O-乙酰基酯酶(SIAES),分别鉴定并在哺乳动物细胞中添加和表征盐酸 - 乙酰基酯酶(SOATS)和O-乙酰酯酶(SIAES)(SIAES)(SIAES)(SIAES)(SIAES)(siaES),分别鉴定出和去除O-乙酰基组。这些进步现在使我们能够更完整地了解多样的O-乙酰化唾液酸的生物合成途径,以驱动遗传和生物化学模型细胞系和生物体的产生,并具有o-乙酰化的唾液酸表达的表达,以改变其角色,以使其在孔隙蛋白中脱离孔隙蛋白的良好性,并伴随着孔隙蛋白的良好性,并具有良好的发现,并具有良好的发现,并具有良好的发现,并具有良好的发现,并逐渐识别。此外,越来越多的研究将唾液酸O-乙酰化与癌症,自身免疫性和感染相关联,这为开发选择性探针和Soats and Siaes的抑制剂提供了理由。在这里,我们讨论了O-乙酰化唾液酸的生物合成和生物学功能的当前见解,并回顾了将这种修饰与疾病联系起来的证据。此外,我们讨论了针对不自然的O-乙酰化唾液酸的设计,合成和潜在应用的新兴策略,以及肥皂和SIAES的抑制剂,这些策略可能可以实现这种多功能唾液酸的治疗靶向。
大型藻类是一种可获得且相对容易养殖的海洋资源。它们有一些令人兴奋的应用前景,例如可用于治疗炎症、心脏病和凝血障碍的活性物质,但总体而言,海藻被业界视为琼脂、藻酸盐和角叉菜胶等商品的来源。无脊椎动物也令人感兴趣(例如齐考诺肽),但与微生物相比,它们在可持续收获或生物技术生产方面存在问题,尽管贻贝和牡蛎的养殖已经很成熟,海绵的养殖也正在成为可能。此外,我们也才刚刚开始认识到海洋微生物和更复杂的生物之间许多独特的共生或共生关系的全部含义。
条件通常是分散的(NaturesCot,2021)(请参阅参考文献6)。物种丰富的草原的建立,增强和自然网络吸引并支持各种物种和生态系统,包括爬行动物,昆虫和其他无脊椎动物,鸟类和哺乳动物。估计,该栖息地为超过20%的英国植物物种提供了住房,并且具有每平方米40种的可能性(参见参考文献7)。特别重要的是传粉媒介,其中包括一系列昆虫,例如大黄蜂,孤独的蜜蜂,气垫蝇和甲虫。估计在欧洲种植的农作物物种中有84%直接取决于这些物种(参见参考文献8)。
虱子,臭虫,tick虫,水ches和其他微小的吸血的爬行生物被视为讨厌的吸血鬼,引起瘙痒,引起令人恶心的感觉,使人类和动物疾病探向人类和动物疾病,从而带来了有关人类社会的医疗,健康,健康,卫生和精神问题(Lehane Socieities(Lehane)(Lehane),Lehane,2005年)。除了它们携带和传播的微生物病原体外,独特的微生物与它们相关,并以多种方式影响其生理,生态学和其他生物学方面(Rio等,2016; Husnik,2018)。例如,他们的食物,脊椎动物的血液肯定是营养丰富的,但没有一些重要的营养素,例如B族维生素。因此,许多流血器具有称为细菌的专业器官,用于托管维生素养育共生体(Buchner,1965年),这使它们只能在血液粉上壮成长(Duron和Gottlieb,2020年)。完全充血的血液喂食器表现出充满挑战的肠道环境,具有大量的蛋白质,铁,血红素和抗微生物成分,例如抗体和补充,这可能会促进独特的肠道微生物组(Sterkel等,2017)。由于高通量DNA测序技术的最新发展,我们对与这些吸血无脊椎动物相关的微生物组的了解,必须与它们独特的喂养习惯和生理学有关,这已经迅速增长。因此,这个研究主题是“吸血节肢动物和其他动物的微生物伴侣:与其生理,生态和进化的相关性”旨在为这项研究网络中出现的新发现提供一个论坛。In total, nine articles and two reviews are compiled, which showcase the microbial associates of a diverse array of blood-feeding invertebrates including lice (Insecta: Psocodea), tsetse flies (Insecta: Diptera), fleas (Insecta: Siphonaptera), ticks (Arachnida: Ixodida) and mites (Arachnida: Mesostigmata)来自