使用Trizol试剂(Invitrogen,Carlsbad,CA,美国)提取总RNA。使用Prime-Script RT试剂试剂盒(完美的实时,日本Takara)合成互补的DNA(cDNA)。3-磷酸甘油醛脱氢酶(GAPDH)用作内部对照基因,并使用2 – DDCT公式计算折叠诱导。使用SYBR Premix ex Taq进行定量实时PCR分析(日本Takara。Inc.目录编号DRR041A)(PCR协议:阶段1:早期讲述,重复:1;95℃30s阶段2:PCR反应,重复:40; 95℃5 s; 60℃30s阶段3:熔体曲线:熔体曲线:95℃15s; 60 s; 60 s; 60 s; 95 s; 95 s; 95 s;95℃15s)。使用了以下引物:ARID1A(F)5'-CTTCACTCAGTCAGCTCCCA-3',arid1a(r)5'-GGTCACCCCACCCTCATCTCATACTCCTTT-3',gapdh(f)5'-GGGTGGTGGTGGTGGTGGTGGTGGTGGTCTCTCTCTCTCTCCTGATCTCAACA-3',and gapdh(R) 5'-GTTGCTGCCCAAATTCGTTGT-3'。GAPDH用作内源性对照。每次三份重复每个样本,并使用相对定量软件(Applied Biosystems)分析。
在各种生命科学应用中,通过转染细胞来改变其基因型或表型至关重要。有多种转染方法可供选择,而选择最佳方法通常取决于与特定应用的兼容性。电穿孔是一种物理转染策略,它使用电脉冲在细胞膜上创建临时孔,核酸或蛋白质可以通过这些孔进入细胞。它是一种高效而强大的工具,已被证明在基于基因编辑的有效载荷(如 CRISPR-Cas9 系统和 TALEN)方面具有出色的性能。赛默飞世尔提供研究级 Invitrogen™ Neon™ NxT 电穿孔系统(配备 10uL 或 100uL 试剂盒)和符合 GMP 标准的 CTS™ Xenon™ 电穿孔系统(配备 1mL SingleShot 或封闭式一次性 5-25 mL MultiShot 耗材)。这两种仪器都采用相同的核心技术。在这项研究中,我们已经证明这些平台具有高度灵活性,并且与具有不同有效载荷的多种哺乳动物细胞类型兼容。此外,我们还展示了两台仪器之间电穿孔条件的可扩展性。Neon NxT 系统上的基因编辑条件可以扩展到 Xenon 系统,后者是专为符合 GMP 的细胞疗法生产而设计的平台。
植物皂苷(PMS)购自成都慕斯特生物技术有限公司(四川,中国),纯度≥98%。A549、95D、SPC-A1、H460和H292细胞购自美国典型培养物保藏中心(ATCC;美国弗吉尼亚州马纳萨斯)。RPMI-1640培养基购自HyClone公司(Cat#SH30809.01;美国犹他州洛根)。胎牛血清(ATCC 30-2020)购自赛默飞世尔科技公司(美国马萨诸塞州)。二甲基亚砜(DMSO)、1-溴-3-氯丙烷、异丙醇、乙醇、顺铂(DDP)和其他溶剂购自Sigma公司(美国密苏里州圣路易斯)。细胞计数试剂盒-8 (CCK-8)、0.25%胰蛋白酶、0.01 M PBS (粉末,pH7.2~7.4)、1%多聚甲醛、线粒体膜电位测定试剂盒(含JC-1)和100×青霉素-链霉素溶液均购自北京索莱宝科技有限公司(北京,中国)。B27、表皮生长因子 (EGF) 和碱性成纤维细胞生长因子 (bFGF) 均购自 Invitrogen 公司(CA,美国)。一抗,包括抗 Caspas-3 (Cat#ab13847)、抗 Caspas-9 (Cat#ab32539)、抗 SOX2 (Cat#ab93689)、抗 CD44 (Cat#ab216647)、抗
方法在补充了10%FCS,1%谷歌补充剂(Gibco),100 U/ml青霉素和100μg/ml链霉菌素的IMDM(Gibco)中培养了衍生成近单倍型HAP1细胞的细胞培养。siRNA转染是根据制造商的指南使用Rnaimax(Invitrogen)进行的。在这项研究中使用了以下siRNA:Sinon-targetable(Dharmacon),Sipolg2(地平线,TargetPlus,SmartPool),SIMRPL23(Horizon,Targetplus,TargetPlus,Smartpool)。将所有药物(Aphidicolin,Hu,Olaparib,Rad51i(B02),DNA-PKI(NU74441)和寡霉素A)溶解在DMSO中,并以指示浓度使用。细胞使用具有137CS源的γ提取器(最佳疗法)进行γ辐射。生长测定HAP1细胞以1500个细胞/孔的密度将HAP1细胞铺在96孔板中,并被视为5天。5天后,使用100%甲醇固定细胞,并在室温下使用Crystal Violet染色2H。随后,将晶体紫溶解在10%乙酸中,并使用Biotek Epoch Epoch分光光度计在595 nm处测量强度。使用非线性拟合,sigmoidal,4pl,x是log(浓度),将这些测量值用于棱镜中的IC50计算。在9mm玻璃盖上生长免疫荧光细胞,并在室温下以4%甲醛和0.2%Triton X-100固定10分钟。使用了以下抗体:人类抗克雷斯特(Cortex Biochem,CS1058),兔抗PH3SER10(Campro,#07-081),小鼠抗ERCC6L(PICH)(ABNOVA,ABNOVA,000548421-B01P)。所有初级抗体在4°C的夜间孵育。使用固定缓冲液I(BD生物科学)固定细胞。细胞。二级抗体(分子探针,Invitrogen)和DAPI在室温下孵育2小时。使用延长金(Invitrogen)安装盖玻片。使用具有60倍1.40 Na油目标的Deltavision Deonvolution显微镜(Applied Precision)获取图像。SoftWorx(应用精度),ImageJ,Adobe Photoshop和Illustrator CS6用于处理获得的图像。单倍体插入诱变筛选基因对用APH或HU处理的HAP1细胞的存活至关重要,如先前所述35,使用单倍体插入诱变筛查鉴定。诱变的HAP1细胞是从Brummelkamp实验室获得的。简短地,获得HAP1细胞的诱变如下:在HEK293T细胞中产生了基因陷阱逆转录病毒。每天两次收获逆转录病毒至少三天,并通过离心(使用SW28转子进行2小时,21,000 rpm,4°C,4°C)进行沉淀。在8μg/ml硫酸素硫酸素的存在下,在T175烧瓶中至少连续两天,在8μg/ml硫酸素的存在下,将大约4000万个HAP1细胞通过浓缩基因陷阱病毒的转导而被诱变。在包含10%DMSO和10%FCS的IMDM培养基中冷冻诱变细胞。解冻后,在存在27.5 nm adphidicolin或100μmHu的情况下,将诱变的HAP1细胞转移了10天。传递后,通过胰蛋白酶-EDTA收集细胞,然后进行沉淀。为了最大程度地减少潜在地含有杂合突变的二倍体细胞的混杂,用DAPI染色固定的细胞,以允许使用Astrios Moflo对G1单倍体DNA含量进行分类。将3000万个排序的细胞在56°C下裂解过夜,以使使用DNA迷你试剂盒(QIAGEN)进行基因组DNA分离。插入位点映射基因陷阱插入位点通过LAM-PCR放大,然后进行捕获,ssDNA接头连接和指数放大,并在测序之前使用含有Illumina适配器的引物,如前所述,如前所述35。映射和插入位点的分析以前描述了78。简短地,在对HISEQ 2000或HISEQ 2500(Illumina)进行测序之后,将插入位点映射到人类基因组(H19),允许一个不匹配,并与RefSeq坐标相交,以将插入位点分配给基因。基因区域在相对链上重叠的基因区域没有考虑进行分析,而对于在相同链基因名称上重叠的基因是串联的。对于每种复制和两种药物治疗(APH或HU)基因的必要性都是通过二项式检验确定的。合成致死性。一个基因通过所有Fisher的测试,其p值截止为0.05,效应大小至少为0.12(减法比率wt sense比率 - 复制应力条件感官比率)。
材料。Fmoc-β-amino acids, including Fmoc- L -β-homoalanine, Fmoc- L -β-homoisoleucine, Fmoc- L -β-homoleucine, Fmoc- L -β-homophenylalanine, Fmoc-(1S,2S)-2-aminocyclopentane carboxylic acid, Nβ-Fmoc-Nω-Boc- L -β-homolysine, Fmoc-O-tert-butyl- L -β-homoserine, and Fmoc-α-amino acids, including Fmoc-glycine, Fmoc- L -alanine, Fmoc- L -isoleucine, Fmoc- L - leucine, Fmoc- L -phenylalanine, Fmoc-O-tert-butyl- L -serine, FMOC-L-β-双晶,FMOC-L-主要酸β-TERT-丁基酯,FMOC-L-谷氨酸γ-tert-叔丁基酯,Nα-FMOC-Nε-boc-l-赖氨酸是从Chem-impex International,Inc.(Wood Dale,Inc.,IL,USA,USA,USA)购买的。fmoc-l-脱毛氨酸是从热科学化学品购买的。FMOC-L-Norvaline购自Santa Cruz Biotechnology。hatu是从奥克伍德化学品获得的。Tentagel S RAM FMOC购自Advanced Chemtech(肯塔基州路易斯维尔)。Menadione,N,N-二异丙甲胺,Mueller Hinton肉汤和磷酸二氮的磷酸钠,是从Sigma-Aldrich(密苏里州圣路易斯)获得的。3-(n-甲磷脂)丙烷磺酸(MOPS)获自Fisher Scientific(宾夕法尼亚州匹兹堡)。2,3-双(2-甲氧基-4-硝基-5-磺苯基)-2H-四唑-5-羧基(XTT)购自从Invitrogen购买。Gibco Brand RPMI 1640粉末(含有苯酚红和L-谷氨酰胺,没有碳酸氢钠或HEPES)和Dulbecco的磷酸盐缓冲盐水(DPB,无钙或镁)是从Thermo Fisher Scientific(MA)获得的。使用Millipore过滤系统纯化水(18.2MΩ)。细胞滴度GLO 2.0分析套件来自Promega(WI)。
野生型FLT3(FLT3-WT)激酶在未成熟的造血细胞,胎盘,性腺和大脑中表达。1,它在骨髓中造血干细胞的分化和存活中起着重要作用。2在正常的造血环境中,FLT3主要在CD34阳性细胞中表达,并积分参与早期造血,重建多谱系髓样前体,3和树突状细胞成熟。4,5在急性髓样白血病(AML)中,FLT3激酶(FLT3-ITD)的固定结构域(FLT3-ITD)中的内部串联重复,在不同患者的氨基酸序列中显示出最普遍的FLT3 KINAPES突变和大约30-40%的患者的突变。在临床试验中已经研究了许多FLT3激酶抑制剂,例如Gilteritinib,6个crenolanib,7 Quizartinib 8和Midostaurin,9等。然而,当前大多数FLT3激酶抑制剂无法区分结构上类似的CKIT激酶和FLT3-WT激酶,这可能导致骨髓抑制毒性。10在这里,我们报告了一种新型的FLT3-ITD突变体选择性抑制剂CHMFL-FLT3-362(缩写为化合物362)的疾病,该抑制剂在FLT3-WT和CKIT激酶上都具有高选择性。它还针对FLT3- ITD + AML的临床前模型显示出令人印象深刻的体外和体内效率。我们首先使用Z'-Lyte(Invitrogen)生化测定法使用纯化的FLT3 WT/ITD突变蛋白研究了化合物362对FLT3-ITD和FLT3-WT的活性。结合模式的动力学研究表明,化合物362是ATP竞争性抑制剂(图1C)。数据显示,Com-pound 362(有关化学结构的图1A)在FLT3-ITD和FLT3-WT之间的选择性超过30倍(图1B)。然后,我们用一组工程的BAF3细胞测试了化合物362的抗增生效应,这些效果用不同的FLT3 WT/ITD突变体转化(图1D和在线补充表S1)。有趣的是,化合物表现出对所有ITD突变体的有效抑制活性,其长度不同,范围为6至33个氨基酸,并且对FLT3-WT的选择性达到7至30倍。然而,它对包括FLT3-ITD-G697R/D835(DEL/I/V)/Y824(R/H)的FLT3-ITD的耐药突变体的效力要小得多,以及一级功能性突变,包括包括FLT3-ITD-G697R/D835(R/I/V),包括包括FLT3-ITD/D835-ITD-G697R/D835(del/i/v)/Y824(R/h)。所有这些数据都表明化合物362是FLT3- ITD突变体选择性抑制剂。正如预期的那样,这种选择性在白血病细胞系中被选择性抑制对FLT3-ITD依赖性AML细胞(MV4-11,MOLM-13和MOLM-14)与FLT3 WT WT-WT-wt-wt-表达细胞(U937,cmk,oci-AML-2-2,以及HL-2,以及HL-60)的选择性抑制(MV4-11,MOLM-13和MOLM-14)(MOLM-13和MOLM-14)(MOLM-13和MOLM-14)(MOLM-13和MOLM-14)。为了进一步显示com-pount 362的全元组选择性,我们以1 m的浓度对Dovistx的Kinomescan TM技术进行了检查。结果表明,化合物362具有良好的选择性曲线(S得分35 = 0.02)。除了FLT3外,化合物362还显示出与CKIT,CSF1R,FLT1,VEGFR2,PDGFR2,PDGFRα和PDGFRβ激酶的强大结合(图1E和在线补充表S2)。由于激活的TM是一种基于结合的测定法,并且可能不会真正反映激酶的抑制活性,然后我们与Z'-Lyte
目标。这项研究的目的是使用16S rRNA基因的下一代测序(NGS)来表征并可能区分健康和肥胖马的下肠道(粪便)细菌。方法。这项研究涉及7匹马(4匹马和3匹母马),年龄8-17岁:乌克兰鞍品种1-4匹马(马1运动马匹rebus,10 Y.O.,马匹2马匹2种马santes,15 Y.O.,15 Y.O.,15 Y.O.),重量吃水的5匹马(种马Tsyhan,8 Y.O.)和非透明马6和7(Mare Sne-Zhynka,10 Y.O.,Mare Rumba 12 Y.O.)马匹2、4、5和7是肥胖,马1、3和6是健康的。所有马匹都保留在州生物技术大学的马术中心,乌克兰教育与科学部(乌克兰哈尔基夫)。根据制造商的说明,使用Purelink微生物组DNAPuriÞ阳离子试剂盒(Invitrogen,USA)提取直肠粪便样品的总DNA。准备了细菌16S rRNA的库,我们使用了16S rRNA条形码试剂盒1-24(美国牛津纳米波尔)。为了净化所获得的库,磁性颗粒核元素清理和尺寸选择(Macherey-Nagel,德国根据推荐的快速测序放大器的建议协议 - 16S条形码(SQK-16SS024)(测序套件的手册)。这些条件基于Fujiyoshi等人(2020)中所述的16S rRNA基因扩增阳离子的标准方案,并确保细菌DNA跨各种群分类群的稳健扩增。结果。结论。细菌门的代表(Syn.肌动杆菌),纤维杆菌,小叶虫 - 螺旋杆菌(Syn.螺旋体),杆菌,富公司(Syn.芽孢杆菌),planctomycetota,verrucomicrobiota(Syn.verrucomicrobia),念珠菌Melainabacteria,kiritimatiellota和proteeobacteria(Syn.假单胞菌)。占主导地位的门是坚硬的,其份额是所有检测到的门的50%至82%。与杆菌的数量相比,健康马匹和肥胖马之间的数量差异很大。在健康马1,3和6中,这是企业和肥胖的马2,4,5和7的2.5、3.4和2.9倍,它是8.6、8.2、7.6和5.7倍。与杆菌相比,坚硬的人数在健康马匹和肥胖马之间发生了显着变化。在健康的马1、3和6中,牢固的数量分别为2.5、3.4和2.9倍,而在肥胖的马2、4、5和7中,牢固的数量分别为8.6、8.2、7.6、7.6和5.7倍。在肥胖的马匹2、4、5和7中观察到蛋白杆菌的数量增加,范围为25%至37%,而在健康运动马1、3和6中,蛋白质的水平在1.07至3.43%之间,这对于健康动物的微生物组典型。在研究的马匹粪便中检测到低水平的放线菌(分杆菌):健康运动马3分别为0.09%,健康运动马3分别为0.09%,健康马匹6分别为0.15%。相比之下,肥胖的马2、4、5和7的水平分别从0.21%到0.48%。重要的是要注意,放线菌的门还包括BiÞ多杆菌属,在所研究的任何动物中均未检测到。在乌克兰第一次,我们对七个不同年龄,性别和品种的七匹马的下肠道(粪便材料)的细菌菌群进行了测序。在肥胖马的粪便中,细菌的细菌占主导地位(天细菌粉,粉状,裂缝),尤其是来自振荡性螺丝素和lachnospileceae的家族,并伴随着细菌的降低细菌(fcylumberimteroidota)(FC-fcbe)(FC-fc-
全基因组测序和分析 - 基于 Illumina Rhabdoid (RT) Illumina 基因组板的文库构建(350-450bp 插入大小):将 96 孔格式的 2ug 基因组 DNA 通过 Covaris E210 超声处理 30 秒进行碎裂,使用 20% 的“占空比”和 5 的“强度”。双端测序文库是按照 BC 癌症机构基因组科学中心 96 孔基因组 ~350bp-450bp 插入 Illumina 文库构建协议在 Biomek FX 机器人(Beckman-Coulter,美国)上准备的。简单来说,DNA在96孔微量滴定板中用Ampure XP SPRI 珠子纯化(每60uL DNA 40-45uL 珠子),在单一反应中分别用T4 DNA聚合酶、Klenow DNA聚合酶和T4多核苷酸激酶进行末端修复和磷酸化,然后用Ampure XP SPRI 珠子进行清理,并用Klenow片段(3'到5'外显子减去)进行3' A加尾。用Ampure XP SPRI 珠子清理后,进行picogreen定量以确定下一步接头连接反应中使用的Illumina PE接头的数量。使用 Ampure XP SPRI 珠子纯化接头连接产物,然后使用 Illumina 的 PE 索引引物组,用 Phusion DNA 聚合酶(美国赛默飞世尔科技公司)进行 PCR 扩增,循环条件为:98˚C 30 秒,然后 6 个循环,98˚C 15 秒,62˚C 30 秒,72˚C 30 秒,最后在 72˚C 延伸 5 分钟。使用 Ampure XP SPRI 珠子纯化 PCR 产物,并使用高灵敏度分析(美国珀金埃尔默公司)用 Caliper LabChip GX 检查 DNA 样本。所需大小范围的 PCR 产物经过凝胶纯化(在内部定制机器人中使用 8% PAGE 或 1.5% Metaphor 琼脂糖),并使用 Agilent DNA 1000 系列 II 检测和 Quant-iT dsDNA HS 检测试剂盒使用 Qubit 荧光计(Invitrogen)评估和量化 DNA 质量,然后稀释至 8nM。在使用 v3 化学法在 Illumina HiSeq 2000/2500 平台上生成 100bp 配对末端读数之前,通过 Quant-iT dsDNA HS 检测确认最终浓度。全基因组亚硫酸盐-Seq 文库构建和测序:使用 1-5 mg Qubit(Life Technologies,加利福尼亚州卡尔斯巴德)定量基因组 DNA 进行文库构建,如所述(Gascard 等人,2015 年)。为了追踪亚硫酸盐转化的效率,将 1 ng 未甲基化的 lambda DNA (Promega) 掺入使用 Qubit 荧光法定量的 1 µg 基因组 DNA 中,并排列在 96 孔微量滴定板中。使用 Covaris 超声处理将 DNA 剪切至 300 bp 的目标大小,并使用 DNA 连接酶和 dNTP 在 30o C 下对片段进行末端修复 30 分钟。使用 2:1 AMPure XP 珠子与样品比例纯化修复后的 DNA,并在 40 µL 洗脱缓冲液中洗脱以准备 A 尾;这涉及使用 Klenow 片段和 dATP 将腺苷添加到 DNA 片段的 3' 端,然后在 37o C 下孵育 30 分钟。用磁珠清理反应后,将胞嘧啶甲基化双端接头(5'-AmCAmCTmCTTTmCmCmCTAmCAmCGAmCGmCTmCTTmCmCGATmCT-3' 和 3'-GAGmCmCGTAAGGAmCGAmCTTGGmCGAGAAGGmCTAG-5')在 30oC 下连接到 DNA 20 分钟,并纯化接头两侧的 DNA 片段珠。在亚硫酸盐转化之前,用 10 个 PCR 循环扩增一份文库片段,并在 Agilent Bioanalyzer 高灵敏度 DNA 芯片上进行大小测定。扩增子的长度在 200-700 bp 之间。使用 EZ Methylation-Gold 试剂盒(Zymo Research)按照制造商的方案实现甲基化接头连接的 DNA 片段的亚硫酸盐转化。五次循环
细胞LRRK2激酶活性是使用Invitrogen的Lanthascreen技术测量的。SH-SY5Y神经母细胞瘤细胞用HG2019S或HWT LRRK2转染。 在小鼠成纤维细胞3T3细胞系中测量 LRRK2 PS935/总LRRK2比,以评估LRRK2激酶抑制。 OPM-383报告了细胞IC50值(NM)。 使用辐射蛋白激酶测定(Panqinase®活性测定)来测量所选蛋白激酶面板的激酶活性。 OPM-383溶解在1%DMSO的适当矩阵中。 在细胞色素P450抑制分析中研究了七个主要的细胞色素P450同工型(CYP1A,CYP2B6,CYP2B6,CYP2C8,CYP2C9,CYP2C9,CYP2C19,CYP2D6和CYP3A4)。 OPM-383溶解在1%Tween 80和1%HPMC中,并通过口服途径给药。 在给药后,在不同时间处死啮齿动物。 使用LC/MS-MS方法对OPM-383进行了定量。 OPM-383(5 µM)脑中的蛋白结合在4H使用UPLVC/MS-MS孵育后进行分析。 在英国Cyprotex评估了体外代谢,渗透性和蛋白质结合的体外代谢。 HERG研究是在Cerep进行的;法国。 OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。 在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。 用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。 MC-38细胞被接种到C57BL/6小鼠中。SH-SY5Y神经母细胞瘤细胞用HG2019S或HWT LRRK2转染。LRRK2 PS935/总LRRK2比,以评估LRRK2激酶抑制。细胞IC50值(NM)。使用辐射蛋白激酶测定(Panqinase®活性测定)来测量所选蛋白激酶面板的激酶活性。OPM-383溶解在1%DMSO的适当矩阵中。在细胞色素P450抑制分析中研究了七个主要的细胞色素P450同工型(CYP1A,CYP2B6,CYP2B6,CYP2C8,CYP2C9,CYP2C9,CYP2C19,CYP2D6和CYP3A4)。OPM-383溶解在1%Tween 80和1%HPMC中,并通过口服途径给药。啮齿动物。使用LC/MS-MS方法对OPM-383进行了定量。OPM-383(5 µM)脑中的蛋白结合在4H使用UPLVC/MS-MS孵育后进行分析。在英国Cyprotex评估了体外代谢,渗透性和蛋白质结合的体外代谢。HERG研究是在Cerep进行的;法国。 OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。 在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。 用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。 MC-38细胞被接种到C57BL/6小鼠中。HERG研究是在Cerep进行的;法国。OPM-383溶解在1%Tween 80中,1%HPMC溶于水中,并通过口头途径以50 mg/kg的速度进行CD1。在给药后九十分钟后,迅速剖析了小鼠,并在液氮中迅速解剖血液,脑和肾脏。用于免疫印迹程序,使用针对PS935和总LRRK2的抗体。MC-38细胞被接种到C57BL/6小鼠中。蛋白质印迹检测和定量,并计算LRRK2 PS935/总LRRK2比例以比较LRRK2激酶抑制剂剂量与媒介物组相比。当肿瘤肿块达到75mm³时,将小鼠随机分配以接受OPM-383(50和100 mg/kg,口服,本次),抗PD1抗体(10 mg/kg,IP,每周两次)或组合。用OPM-383处理通过胃管通过口服烤(PO)进行治疗。给药量为10 mL/kg,调整为最新的个体体重。抗PD-1处理被注入腹膜腔(IP)。 动物治疗35天。 OPM-383使用Sengine-Paris®平台在患者衍生的类器官中进行了评估。 使用声液体处理机器人在第一天对细胞进行处理,不同浓度范围为0.32至10 µm。 在第六天,相对于车辆处理的井,每个孔中的细胞活力是一个百分比确定的。 为了评估药物敏感性,对药物反应曲线的AUC数据进行了分层聚类。 因此,Sengine确定了阈值(SPM),以定义分子在器官中的活性。 如果SPM> 9,则认为类器官对药物敏感,而SPM <9表示耐药性。抗PD-1处理被注入腹膜腔(IP)。动物治疗35天。OPM-383使用Sengine-Paris®平台在患者衍生的类器官中进行了评估。使用声液体处理机器人在第一天对细胞进行处理,不同浓度范围为0.32至10 µm。在第六天,相对于车辆处理的井,每个孔中的细胞活力是一个百分比确定的。为了评估药物敏感性,对药物反应曲线的AUC数据进行了分层聚类。因此,Sengine确定了阈值(SPM),以定义分子在器官中的活性。如果SPM> 9,则认为类器官对药物敏感,而SPM <9表示耐药性。
Gateway克隆技术基于保守和定向的重组系统,该系统允许在不同的克隆向量之间传递DNA片段,从而保持阅读网格,而无需核苷酸或损失。使用这种技术,不再需要使用限制性核酸内切酶(消除使用限制酶固有的任何限制)和DNA连接酶[1]。与传统的克隆方法相比,这项技术更快,更高效且便宜。此技术使您可以获得极高的克隆效率(大于90%)[2]。该技术是蛋白质合成和功能分析的极好克隆方法[3]。通过两种反应,BP和LR反应,使用了Gateway克隆机制(在ATTP和ATTB,ATTL和ATTR之间)利用gateway的克隆机制。为了发生BP反应,我们首先在包括ATTB序列的引物对[1.3](供体载体包括ATTP位置[1])的帮助下放大了感兴趣的基因。包括ATTB位置的PCR产品与包括ATTP位置的供体矢量相结合,从而形成了输入克隆[1]。ATTB和ATTP位置之间的这种整合反应在于该反应的起源,这引起了含有attl两侧的感兴趣基因的入口克隆(由ATTB和ATTP的重组组成)[1]。LR反应是进入克隆ATTL位置与目标向量的ATTT位置之间的重组反应,导致表达克隆[3]。从BP反应获得的输入克隆包括ATTL位置,目标向量构建以包括ATTR [1]位置。LR反应旨在将感兴趣的基因转移到目标载体,因此输入克隆与适当的目标矢量和LR克隆酶混合。这些地方之间的重组产生了两个分子[2],其中一个包含感兴趣的DNA段,另一个分子是一个副产品,其中包含CCDB基因,该基因与大肠杆菌DNA干扰了它的生长,以阻止其生长[3]。 CCDB。该基因对该技术非常重要,因为它可以防止大肠杆菌生长,从而允许进行负面选择。也就是说,在这两种反应中重组后,我们将拥有一种产品(将具有CCDB基因所在的感兴趣的基因)和副产品(将具有感兴趣基因所在的CCDB基因),因此,当选择的菌落将在其中包含一个具有利益的载体的菌落时,可以更轻松地(将其更容易)(可以选择一个是表达和表达的基因)使网关克隆技术成为高性能克隆技术的因素)。要获得包含CCDB基因的载体和传播向量,我们必须求助于e.coli db3.1 striber,该基因在Girase DNA中具有突变(gyra462),使其对该基因的致命作用具有抗性[3]。将感兴趣的基因或DNA片段克隆在输入克隆中后,我们可以将其转移到各种目的地向量,从表达蛋白到大肠杆菌细胞,酵母,昆虫,哺乳动物之间[4]。该方法的一些主要应用是这样的事实,即它允许输入向量向他人的亚克隆,基于攻城特异性重组,允许每个亚键反应以维持适当的阅读网格,速度和易于次数。