土地测量 建筑测量 机器控制 分级自动化 重型建筑 结构装配 施工检查 合规性检查 等级检查 工程研究 灾害准备 公用设施位置和许可 GIS - 资源测绘 初步工程资产清单 实物工厂基础设施清单 结构完整性监测 水坝、桥梁、建筑物、工厂 环境测绘 地球物理研究 板块运动 海啸响应规划 山体滑坡研究 地质变形 大气数据 电离层和对流层建模 精确导航 扫雪机导航 海上搬运 危险清除 铁路运营 智能交通 路线划分 应急响应 事件测绘 事件后分析 恢复和重建 精确引导 取证 现场调查 考古 修复控制 纪念碑 纪念碑保护 机器人 计时
高频 (HF) 通信,范围从 3 MHz 到 30 MHz,采用单边带、抑制载波调制,带宽约为 2.5 kHz,通常发射功率为几百瓦。但是,HF 传播会随频率、天气、一天中的时间和电离层条件而变化。甚高频 (VHF) 通信跨越两个不同的频段:30 MHz 至 88 MHz 专供军事用户使用,118 MHz 至 156 MHz 供民用和军用用户使用,标准双边带 AM 调制,发射功率为 40 dBm 至 45 dBm。超高频 (UHF) 通信包括 VHF 和 UHF,工作频率为 225 MHz 至 400 MHz。FM 调制方案采用 40 dBm 至 50 dBm 的发射功率,AM 调制方案采用 40 dBm 至 44 dBm 的发射功率。该频段通常被军事用户用于各种脉冲、跳频和电子对抗措施 (ECCM),例如抗干扰。
摘要。本研究重点关注巴基斯坦空间天气监测的进展。巴基斯坦第一座地磁观测站于 1953 年在奎达建立。然而,我们现在正式称之为空间天气服务的开始是在 1971 年,当时国家航天局巴基斯坦空间和高层大气研究委员会 (SUPARCO) 建立了该国第一个电离层站。后来,1983 年,在卡拉奇建立了一个地磁观测站,旨在为相关用户提供高频 (HF) 支持和地磁风暴警报。随着时间的推移,各国开始优先考虑空间天气监测,以确保技术资产的安全。因此,升级仪器阵列被认为是当务之急,以保持操作的可靠性和数据的有效利用,从而为地方、区域和全球范围的研究做出贡献。巴基斯坦最近建立了一个专门的空间天气监测设施,称为巴基斯坦空间天气中心 (PSWC)。本文介绍了巴基斯坦空间天气基础设施的历史演变和 PSWC 目前的贡献。
摘要 — 卫星通信提供了在未覆盖和覆盖不足的区域提供服务连续性、服务无处不在和服务可扩展性的前景。然而,要实现这些好处,必须首先解决几个挑战,因为卫星网络的资源管理、网络控制、网络安全、频谱管理和能源使用比地面网络更具挑战性。同时,人工智能 (AI),包括机器学习、深度学习和强化学习,作为一个研究领域一直在稳步发展,并在包括无线通信在内的各种应用中取得了成功的结果。特别是,人工智能在各种卫星通信方面的应用已经显示出巨大的潜力,包括波束跳跃、抗干扰、网络流量预测、信道建模、遥测挖掘、电离层闪烁检测、干扰管理、遥感、行为建模、天空地一体化和能源管理。因此,本文概述了人工智能、其各种子领域及其最新算法。然后讨论了卫星通信系统各个方面面临的若干挑战,并介绍了基于人工智能的拟议和潜在解决方案。最后,对该领域进行了展望,并提出了未来的步骤。
空间已成为私营部门和公共部门越来越活跃的运营领域。至关重要的是,国防部(DND)具有准确的手段,以保持对部署的太空资产以及周围威胁的能见度和控制。太空域意识(SDA)是一个概念,它是指对部署的太空资产和其他对象的监视和跟踪,以确保运营安全性。当前的SDA方法包括使用地面和太空光学望远镜,以及在上部频段中运行的雷达。两个线元素集(TLE)是轨道数据最易于访问的手段,并提供轨道位置预测,其精度的精度高达1 km,速度为1 m/s。较小的航天器的日益普及,例如立方体和微型卫星作为进行太空操作的经济手段,这增加了对更准确的SDA的需求。本文测试了使用高频(HF)雷达使用视线(LOS)传播和目标检测来实现准确范围和径向速度估计的可行性。国际空间站(ISS)被选为目标,这是由于其尺寸较大和轨道较低的高度。使用20 MHz的工作频率用于刺穿电离层并照亮所选目标。范围多普勒图,并应用校正以补偿大气和滤波器误差。通过夜间传输期和日期传播期比较了电离层在不同水平的太阳能活动中的效果。使用澳大利亚开源软件的总电子含量(TEC)估计计算范围误差,该估计是澳大利亚开源软件提供的高频射线疗法实验室(PHARLAP)。发现,夜间传输不需要高估的TEC,并且不需要校正,而白天的传输测量结果受到较大TEC的极大影响。白天传输产生的估计的电离层范围延迟高达90 km,多普勒校正高达45 Hz。夜间传输的平均延迟为30公里,多普勒校正最大15 Hz。校正后的最终范围测量值在100秒的可见度中,在夜间传输期间,在100秒的可见度中,均方根误差(RMSE)为61 km。具有如此高范围残差,发现HF不适合精确的范围测量值,除非开发出更好的电离层校正方法并应用了更密集的信号处理技术。然而,夜间和白天传播的多普勒测量值均产生的剩余RMSE小于10 Hz。夜间传输范围率残差仅为85 m/s,在TLE精度的误差范围内。这表明HF可用于使用多普勒测量值进行精确测定。
摘要:当今的技术发展使得使用机器代替人类执行特定任务成为可能。然而,这种自主设备面临的挑战是在不断变化的外部环境中精确移动和导航。本文分析了不同天气条件(气温、湿度、风速、大气压力、使用的卫星系统类型/可见卫星以及太阳活动)对定位精度的影响。为了到达接收器,卫星信号必须传播很长的距离并穿过地球大气层的所有层,大气层的变化会导致错误和延迟。此外,接收卫星数据的天气条件并不总是有利的。为了研究延迟和误差对定位的影响,对卫星信号进行了测量,确定了运动轨迹,并比较了这些轨迹的标准偏差。所得结果表明,可以实现高精度定位,但太阳耀斑或卫星可见度等变化条件意味着并非所有测量都能达到所需的精度。卫星信号绝对测量法的使用在很大程度上促成了这一点。为了提高 GNSS 系统的定位精度,首先建议使用消除电离层折射的双频接收器。
摘要:大气总水蒸气含量 (TWVC) 会影响气候变化、天气模式和无线电信号传播。全球导航卫星系统 (GNSS) 等最新技术用于测量 TWVC,但精度、时间分辨率或空间覆盖范围均有所降低。本研究证明了使用扩频 (SS) 无线电信号和低地球轨道 (LEO) 卫星上的软件定义无线电 (SDR) 技术预测、绘制和测量 TWVC 的可行性。提出了一种来自小型卫星星座的卫星间链路 (ISL) 通信网络,以实现 TWVC 的三维 (3D) 映射。然而,LEO 卫星的 TWVC 计算包含电离层总电子含量 (TEC) 的贡献。TWVC 和 TEC 贡献是根据信号传播时间延迟和卫星在轨道上的位置确定的。由于 TEC 与 TWVC 不同,依赖于频率,因此已经实施了频率重构算法来区分 TWVC。这项研究的新颖之处在于使用时间戳来推断时间延迟、从星座设置中独特地推导 TWVC、使用算法实时远程调谐频率以及使用 SDR 进行 ISL 演示。这项任务可能有助于大气科学,测量结果可以纳入全球大气数据库,用于气候和天气预报模型。
1. 引言 全球导航卫星系统 (GNSS) 和相关技术可为 2030 年可持续发展议程作出广泛贡献。GNSS 和地球观测数据目前被广泛应用于各个领域,包括测绘和测量、环境监测、精准农业和自然资源管理、灾害预警和应急响应、航空、海上和陆地运输,以及气候变化和电离层研究等研究领域。GNSS 应用提供了一种在保护环境的同时实现可持续经济增长的经济有效方式。当前的 GNSS 包括全球定位系统 (GPS)、全球导航卫星系统 (GLONASS)、北斗卫星导航系统 (BDS) 和欧洲卫星导航系统 (Galileo)。此外还有两个区域系统,即印度星座导航系统 (NavIC) 系统和准天顶卫星系统 (QZSS),以及旨在提高一个或多个 GNSS 质量(例如准确性、稳健性和信号可用性)的各种增强系统。除了 GNSS,地球观测卫星或通信卫星等其他空间技术在创造社会经济效益方面也发挥着关键作用。地球观测卫星能够持续详细地监测地球表面,为环境保护、资源管理和灾害响应提供宝贵的数据。它们有助于追踪森林砍伐、城市扩张和农业用地变化,并为管理水资源和缓解气候变化提供重要见解
DrACO 复杂有机物采集钻探 DraMS 蜻蜓质谱仪 DSL 深空物流 EGS 探索地面系统 EIS 欧罗巴成像系统 EPFD 电动动力系统飞行演示 ESA 欧洲航天局 ESM 欧洲服务舱 ESPRIT-RM 欧洲加油、基础设施和电信系统 加油舱 EUS 探索上面级 GERS 网关外部机器人系统 GRNS 伽马射线和中子光谱仪 GSLV 地球同步卫星运载火箭 HALO 居住和物流前哨 HLS 载人着陆系统 i-Hab 国际栖息地 I&T 集成和测试 ICON 电离层连接探测器 ICPS 临时低温推进级 IMAP 星际测绘和加速探测器 IOC 初始运行能力 ISRO 印度空间研究组织 ISS 国际空间站 JAXA 日本宇宙航空研究开发机构 JCL 联合成本和进度置信水平 JWST 詹姆斯·韦伯太空望远镜 KaRIn Ka 波段雷达干涉仪KASI 韩国天文与空间科学研究所 KDP 关键决策点 L9 Landsat 9 LBFD 低空飞行演示器 LCRD 激光通信中继演示 LICIACube Light 意大利立方体卫星(用于小行星成像) LIDAR 光探测与测距 MASPEX 行星探测质谱仪 MDR 任务定义审查 MISE 测绘成像光谱仪(用于木卫二) ML2 移动发射器 2 MPM 多用途模块 NASA 美国国家航空航天局 NE
先生。博士Ahmad Ashrif A Bakar B.EEE(UNITEN)、M.Sc(UPM)、Ph.D(UQ)、SM.IEEE、M.OSA、M.IEM 光学传感器设计与系统、激光反馈干涉术与等离子体博士。 Aini Hussain BScEEL(路易斯安那州立大学)、MSc(密苏里理工大学)、PhD(英国马来西亚)、MIEEE Tau Beta Pi 智能信号处理、智能识别与模式分析博士。 Huda Abdullah BSc.(UM)、MSc.(UPM)、PhD(UPM)、MIEEE、MMASS、MIFM、YSN-ASM 薄膜、用于传感器和能源应用的纳米功能材料、半导体材料、磁性材料、陶瓷和材料理论数学与建模 Ir。博士Mandeep Singh A/L Jit Singh MSc(USM),PhD(USM) 无线电波传播,卫星 Ir。博士Mardina Abdullah BEng(琉球)、SmSn(英国马来西亚)、PhD(利兹)电离层研究和卫星方向指导;工程制造与智能系统 (电离层研究与导航卫星 (GPS);工业工程与专家系统 (AI)) Dato' Ir.博士Mohd Marzuki Mustafa 工程学士(塔斯马尼亚州)、理学硕士(曼彻斯特理工大学)、博士(索尔福德)计算机控制系统和仪器博士马里兰州Mamun bin Ibne Reaz 理学学士和理学硕士(拉杰沙希大学),工程博士(茨城大学)VLSI 设计、生物医学传感器、智能家居