估计此信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查此信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减少此负担的建议)发送至国防部华盛顿总部服务处信息行动和报告理事会 (0704-0188),地址:1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。1. 报告日期 (DD-MM-YYYY) 24-05-2012
摘要:一种新型的杂酵母(III)乙酰乙酸(ACAC)复合物,(L-5-CHO)2 IR(ACAC)(3B)(3B),是由2-(9'-己基碳唑-3'-3'-y-yly)合成的 - 5-5-5-甲基甲基)-5-甲基甲基吡啶(L-5-Cho)。复合物3b被确定为热化学稳定。研究了该化合物的光致发光特性,3B的二氯甲烷溶液在662 nm处产生无结构的发射,表明与父络合物相比,甲基基团红移151 nm。复合物3b也显示出具有中等的光致发光量子产率(67%)和短发射寿命(= 280 ns)。有机发光二极管(OLEDS)用由聚(N-乙烯基碳水化合物)(PVK),2-(4-tert-叔丁基苯基)-5-(4-二苯基)-1-1,1,3,4-4-oxadia-oxadia-oxadiazole(PBD)组成的溶液加工的发射层(EML)制造。含有复合物3b的OLED在624 nm处显示出红橙发光(EL)。研究了宿主材料的影响,并在发射层中使用PVK和PBD达到了最佳性能,结果OLED的当前效率为0.84 CD/A,功率效率为0.20 Lm/w,外部量子效率(EQE)的功率为0.66%,为2548 CD/M M 22548 CD/M M 2546%。
摘要:氧析出反应 (OER) 对基于水电解的未来能源系统至关重要。氧化铱是极具前景的催化剂,因为它们在酸性和氧化条件下具有耐腐蚀性。在催化剂/电极制备过程中,使用碱金属碱制备的高活性铱(氧)氢氧化物在高温(>350°C)下会转变为低活性金红石 IrO 2。根据碱金属的残留量,我们现在表明这种转变可以产生金红石 IrO 2 或纳米晶态锂插层 IrO x 。虽然转变为金红石会导致活性较差,但锂插层 IrO x 具有与高活性非晶态材料相当的活性和更好的稳定性,尽管在 500°C 下处理。这种高活性纳米晶态的铱酸锂可以更耐受生产 PEM 膜的工业程序,并提供一种稳定非晶态铱(氧)氢氧化物中大量氧化还原活性位点的方法。 ■ 简介
在2009年2月10日,操作Iridium 33与废弃的Cosmos 2251之间的碰撞促进了政策的变化,迎来了碰撞评估和回避的新时代。数据能够对碰撞进行碰撞评估的数据是高精度目录(HAC)的数值集成特殊扰动(SP)模型,当时该模型当时受到公众的限制,但该集团由当时被称为联合空间操作中心(JSPOC)进行连接检测。仅HAC就无法描述操作和可操作卫星的连接风险,因为它没有包含操作员的测量,机动历史或操纵计划。JSPOC不知道Iridium的独立跟踪或操纵计划,Iridium无法使用HAC。各方,虹膜和JSPOC,需要信息的另一半才能知道可能发生碰撞。将使用当时无法使用的合并数据对碰撞进行重新访问,并告知自2009年以来所做的更改的有效性。
如铱星的初始申请所述(该申请在此通过引用并入本文),OrCa2cubesat 是 12U 航天器,将允许地面光学传感器进行各种校准活动,目的是改善对驻留空间物体(“RSO”)的跟踪和检测。OrCa2 立方体卫星任务将使用单个铱星 9602N 调制解调器与铱星 Big LEO 星座中的空间站进行通信。由于 OrCa2 轨道偏心率高,因此人们认识到收发器以非标准模式运行,并且它在本次任务中的使用被视为实验性的。
SkyTrac [MD2]是航空公司的全方位服务,数据驱动的解决方案提供商,为固定翼,旋翼和无人航空市场提供服务。自1986年以来,SkyTrac率先开发了飞行,飞行数据和通信技术的发展,演变和商业化。今天,拥有900多个机身和在线数据管理门户网站的系统认证,这是7,500多名全球用户的首选工具,SkyTrac确实是数据引导的业务见解的首选合作伙伴。从性能趋势和运营报告到实时资产跟踪和情境意识 - SkyTrac提供了对
这种空间辐射 - 传感器技术提供了弹性的检测和表征太空天气危害,例如太阳耀斑。到达数据应用于分析电流和预测的太空天气现象,并确定带电颗粒在上层大气化学中的作用以及Van Allen辐射带的动力学。数据的应用包括监视高纬度的飞机的辐射环境以及地球轨道中的船员任务。
2.2.1 空间段 铱星空间段利用低地球轨道上的 66 颗运行卫星群,如图 2-2 所示。这些卫星位于近极地轨道的六个不同平面上,高度约为 780 公里,大约每 100 分钟绕地球一圈,速度约为 27,088 公里/小时。11 颗任务卫星均匀分布在每个平面内,充当通信网络中的节点。六个同向旋转的平面在经度上相隔 31.6 度,因此平面 6 与平面 1 的反向旋转部分之间的间隔为 22 度。相邻奇数和偶数平面中的卫星位置彼此偏移卫星间距的一半。该卫星群确保地球上的每个区域始终被至少一颗卫星覆盖。目前有 10 颗额外的在轨备用卫星,可在发生故障时替换任何无法使用的卫星。
1.3 适用文件 除了本技术规范外,还应参考几份相关文件。下列文件的最新版本应在本规范规定的范围内构成本规范的一部分。• ICAO 核心 AMS(R)S SARPS 草案,用于支持 AMS(R)S 的 NGSS 核心规范; • RTCA DO-262,用于支持下一代卫星系统 (NGSS) 的航空电子设备的最低运行性能标准,用于 NGSS AMS(R)S 的最低性能标准; • RTCA DO-270,用于航空数据链路的航空移动卫星 (R) 服务 (AMS(R)S) 的最低航空系统性能标准 (MASPS),用于数据链路的要求和规范; • RTCA DO-215A 和 RTCA DO-231,用于指导整体数据和语音性能要求。RTCA 文件的副本可从 RTCA, Inc. 获得,网址为 http://www.rtca.org。ICAO 文件的副本可从 ICAO 获得,网址为 http://www.icao.int。
使用聚合物电解质膜 (PEM) 进行电解的前景十分光明。[4,5] 缺点是,发生在阳极的氧析出反应 (OER) 表现出缓慢的动力学,因此妨碍了高效的整体电化学水分解。[5,6] 大规模电解需要价格实惠且活性高的电催化剂。[7] Ir-[8–10] 和 Ru-[11,12] 材料在酸性电解质中表现出最高的催化 OER 活性。由于其更高的稳定性,Ir-基催化剂代表了最先进的阳极材料。 [8,13,14] 为了提高活性贵金属的利用率,人们尝试了不同的方法,如将 IrOx 与地球上储量丰富的金属氧化物(TiO2、[15] Ta2O5、[16] SnO2[17])合金化,将 IrOx 以纳米晶体的形式分散在高表面积载体材料上(Sb 掺杂的 SnO2[18]),或通过模板工艺引入明确的纳米结构。[10,19] 然而,在添加绝缘过渡金属氧化物(如 TiO2[20] 或 Ta2O5)后,电导率经常会下降。[21] 至于载体材料的稳定性,掺杂已被证明可以提高耐腐蚀性,但大多数载体材料在酸性下稳定性较差。 [22] 感兴趣的读者可以参阅 Maillard 等人撰写的一篇综合评论。[23]